108 research outputs found

    Reconstructing multisets over commutative groupoids and affine functions over nonassociative semirings

    Get PDF
    A reconstruction problem is formulated for multisets over commutative groupoids. The cards of a multiset are obtained by replacing a pair of its elements by their sum. Necessary and sufficient conditions for the reconstructibility of multisets are determined. These results find an application in a different kind of reconstruction problem for functions of several arguments and identification minors: classes of linear or affine functions over nonassociative semirings are shown to be weakly reconstructible. Moreover, affine functions of sufficiently large arity over finite fields are reconstructible.Comment: 18 pages. Int. J. Algebra Comput. (2014

    A note on minors determined by clones of semilattices

    Get PDF
    The C-minor partial orders determined by the clones generated by a semilattice operation (and possibly the constant operations corresponding to its identity or zero elements) are shown to satisfy the descending chain condition.Comment: 6 pages, proofs improved, introduction and references adde

    Graph quasivarieties

    Full text link
    Introduced by C. R. Shallon in 1979, graph algebras establish a useful connection between graph theory and universal algebra. This makes it possible to investigate graph varieties and graph quasivarieties, i.e., classes of graphs described by identities or quasi-identities. In this paper, graph quasivarieties are characterized as classes of graphs closed under directed unions of isomorphic copies of finite strong pointed subproducts.Comment: 15 page

    Galois connection for sets of operations closed under permutation, cylindrification and composition

    Get PDF
    We consider sets of operations on a set A that are closed under permutation of variables, addition of dummy variables and composition. We describe these closed sets in terms of a Galois connection between operations and systems of pointed multisets, and we also describe the closed sets of the dual objects by means of necessary and sufficient closure conditions. Moreover, we show that the corresponding closure systems are uncountable for every A with at least two elements.Comment: 22 pages; Section 4 adde

    The arity gap of polynomial functions over bounded distributive lattices

    Full text link
    Let A and B be arbitrary sets with at least two elements. The arity gap of a function f: A^n \to B is the minimum decrease in its essential arity when essential arguments of f are identified. In this paper we study the arity gap of polynomial functions over bounded distributive lattices and present a complete classification of such functions in terms of their arity gap. To this extent, we present a characterization of the essential arguments of polynomial functions, which we then use to show that almost all lattice polynomial functions have arity gap 1, with the exception of truncated median functions, whose arity gap is 2.Comment: 7 page
    • …
    corecore