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RECONSTRUCTING MULTISETS OVER COMMUTATIVE

GROUPOIDS AND AFFINE FUNCTIONS OVER

NONASSOCIATIVE SEMIRINGS

ERKKO LEHTONEN

Abstract. A reconstruction problem is formulated for multisets over commu-
tative groupoids. The cards of a multiset are obtained by replacing a pair of

its elements by their sum. Necessary and sufficient conditions for the recon-

structibility of multisets are determined. These results find an application in a
different kind of reconstruction problem for functions of several arguments and

identification minors: classes of linear or affine functions over nonassociative

semirings are shown to be weakly reconstructible. Moreover, affine functions
of sufficiently large arity over finite fields are reconstructible.

1. Introduction

Generally speaking, a reconstruction problem asks whether a mathematical ob-
ject can be recovered from partial information. The kind of reconstruction problems
we discuss in this paper fall into the following general scheme: given a combinato-
rial object, we apply a certain operation to its elements in all possible ways, and
we ask whether the initially given object is uniquely determined (up to some kind
of isomorphism) by the collection of these derived objects (which are called the
cards of the object). Perhaps one of the most famous reconstruction problems is
the following: Is every graph uniquely determined, up to isomorphism, by the col-
lection of its subgraphs obtained by deleting a single vertex? It was conjectured by
Kelly [5] (see also Ulam’s problem book [12]) that the answer is positive, provided
that the graph has at least three vertices. While the conjecture has been shown to
hold for various classes of graphs, in full generality it remains an important open
problem in graph theory.

In this paper we consider two different reconstruction problems. The first one
deals with multisets over a commutative groupoid. The cards of a multiset M are
the multisets obtained from M by replacing a pair of its elements by their sum. We
find necessary and sufficient conditions for a multiset to be reconstructible in this
setting. Reconstructibility depends on the cardinality and the form of a multiset
and also on the underlying groupoid.

The reconstruction problem for multisets arose from a completely different recon-
struction problem that was posed and studied in [7]. Here, the objects are functions
of several arguments, and the cards of a function f : An → B are the

(
n
2

)
identifi-

cation minors of f , i.e., the (n− 1)-ary functions obtained from f by identifying a
pair of its arguments. The special case of affine functions over semirings reduces
to the reconstruction problem for multisets over commutative groupoids. As an
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application of our solution to the reconstruction problem for multisets, we show
that classes of affine or linear functions over nonassociative semirings are weakly
reconstructible. Moreover, affine functions of sufficiently large arity over finite fields
are reconstructible.

A function f : An → B is called a minor of another function g : Am → B if there
exists a map σ : {1, . . . ,m} → {1, . . . , n} such that f(a1, . . . , an) = g(aσ(1),...,σ(m))
for all a1, . . . , an ∈ A. New discoveries – either positive or negative – about the
reconstruction problem for functions and identification minors will shed some light
on the minor relation, a topic that has attracted the attention of several researchers
over the past years (see, e.g., [1, 2, 3, 4, 8, 10, 13, 14, 15]).

2. Preliminaries

We follow the standard terminology and notation of abstract algebra, as found,
e.g., in [6, 9].

For a positive integer n, the set {1, . . . , n} is denoted by [n]. The set of all
2-element subsets of [n] is denoted by

(
n
2

)
. The set {0, 1, 2, . . . } of nonnegative

integers is denoted by N.
A finite multiset M over a set X is a map 1M : X → N, called a multiplicity

function, such that the set {x ∈ X : 1M (x) 6= 0} is finite. We will only discuss
finite multisets, and we will refer to them simply as multisets. For a finite multiset
M , the sum

∑
x∈X 1M (x) is a well-defined natural number, and it is called the

cardinality of M and denoted by |M |. We refer to a multiset of cardinality n as
an n-multiset. For each x ∈ X, the number 1M (x) is called the multiplicity of x in
M . We write x ∈ M if 1M (x) ≥ 1. A multiset M is a submultiset of M ′, denoted
M ⊆ M ′, if 1M (x) ≤ 1M ′(x) for all x ∈ X. The empty multiset ∅ is given by the
multiplicity function 1∅(x) = 0 for all x ∈ X.

We may represent a finite multiset M as a list enclosed in angle brackets where
each element x ∈ X occurs 1M (x) times, e.g., 〈0, 0, 0, 1, 1, 2〉. Also, if (ai)i∈I is a
finite indexed family of elements of X, then we will write 〈ai : i ∈ I〉 to denote the
multiset in which the multiplicity of each x ∈ X equals |{i ∈ I : ai = x}|.

Let M and M ′ be finite multisets over X. The multiset sum M ] M ′, the
difference M \M ′, and the intersection M ∩M ′ of M and M ′ are defined by the
multiplicity functions

1M]M ′(x) = 1M (x) + 1M ′(x),

1M\M ′(x) = max(1M (x)− 1M ′(x), 0),

1M∩M ′(x) = min(1M (x),1M ′(x)).

3. Reconstruction problem for multisets over commutative
groupoids

In this section, we formulate a reconstruction problem for multisets over com-
mutative groupoids, and we completely characterize the reconstructible multisets.
We will conclude the section with some open problems.

3.1. Reconstruction problem for multisets. Let (G; +) be a commutative
groupoid. Let n be an integer at least 2. Let M be a multiset of cardinality n
over G. Fix an n-tuple (m1, . . . ,mn) ∈ Gn satisfying M = 〈m1, . . . ,mn〉. For
each I ∈

(
n
2

)
, let MI := M \ 〈mmin I ,mmax I〉 ] 〈mmin I + mmax I〉. The cards of
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M are the multisets MI , for each I ∈
(
n
2

)
, and the deck of M is the multiset

deckM := 〈MI : I ∈
(
n
2

)
〉. (It is irrelevant which particular tuple (m1, . . . ,mn) is

chosen for a given M . Any valid choice will give rise to the same deck.)
A multiset M is reconstructible if for all multisets M ′ over G the condition

deckM = deckM ′ implies M = M ′.
We have now all the necessary definitions for our discussion, and we can formu-

late a reconstruction problem for multisets over commutative groupoids. Is every
multiset over a commutative groupoid reconstructible? If not, which multisets are
reconstructible and which ones are not? Does the answer depend on the underlying
groupoid?

Examples 3.1–3.4 below illustrate that the answer to our first question is nega-
tive: not every multiset over a commutative groupoid is reconstructible. The latter
two questions will be answered later in this paper. It will turn out that these
examples are exhaustive; there is no other nonreconstructible multiset over any
commutative groupoid than the ones described in Examples 3.1–3.4.

Example 3.1. Let (G; +) be a commutative groupoid with elements r, s, t, u, v
satisfying x + u = v and x + v = u for all x ∈ {r, s, t} and r + s = s, s + t = t,
t+ r = r. Let M = 〈r, s, t, u〉, M ′ = 〈r, s, t, v〉. If u 6= v, then M 6= M ′ but

deckM = deckM ′ = 〈〈r, s, u〉, 〈r, t, u〉, 〈s, t, u〉, 〈r, s, v〉, 〈r, t, v〉, 〈s, t, v〉〉.

Note that either r, s and t are pairwise distinct or r = s = t. For, assume that
r = s. Then t = s + t = r + t = r, whence r = s = t. A similar argument shows
that r = t or s = t implies r = s = t.

If r, s and t are pairwise distinct, then r+(s+t) = r 6= t = (r+s)+t, i.e., (G; +)
is not associative. If r = s = t and u 6= v, then r + (r + u) = u 6= v = (r + r) + u,
i.e., (G; +) is not associative and not even alternative. (A binary operation is
left alternative if it satisfies the identity x(xy) = (xx)y and right alternative if it
satisfies the identity y(xx) = (yx)x. An operation is alternative if it is both left
and right alternative. Alternativity is a weaker form of associativity.)

Example 3.2. Let (G; +) be a commutative groupoid with elements r, s, t satis-
fying r+ (r+ s) = s, r+ (r+ t) = t and (r+ s) + (r+ t) = s+ t. Let M = 〈r, s, t〉,
M ′ = 〈r, r + s, r + t〉. Then

deckM = deckM ′ = 〈〈r, s+ t〉, 〈s, r + t〉, 〈t, r + s〉〉.

Furthermore, if {r + s, r + t} 6= {s, t}, then M 6= M ′.
Note that if (G; +) is a Boolean group (a group in which every nonneutral element

has order 2), then the above conditions are satisfied by all elements r, s, t ∈ G.
Furthermore, if r is not neutral and r + s 6= t, then M 6= M ′.

Example 3.3. Let (G; +) be a commutative groupoid with elements r, s, t sat-
isfying (r + s) + (r + t) = r, (r + s) + (s + t) = s and (r + t) + (s + t) = t. Let
M = 〈r, s, t〉, M ′ = 〈r + s, r + t, s+ t〉. Then

deckM = deckM ′ = 〈〈r, s+ t〉, 〈s, r + t〉, 〈t, r + s〉〉,

but M and M ′ are not necessarily equal.
Note that if (G; +) is a monoid with neutral element 0, then the above conditions

are satisfied by all elements r, s, t ∈ G such that r + s+ t = 0.
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Example 3.4. Let (G; +) be a commutative groupoid with elements r, s, t, u
satisfying r + s = t + u and {r, s} 6= {t, u}. Let M = 〈r, s〉, M ′ = 〈t, u〉. Then
M 6= M ′ but deckM = deckM ′ = 〈〈r + s〉〉.

3.2. The solution to the reconstruction problem for multisets. We are go-
ing to show that a multiset over a commutative groupoid is reconstructible if and
only if it is not any one of the multisets described in Examples 3.1–3.4. In our ap-
proach to characterizing the reconstructible multisets, we will make good use of the
collection of all elements in all cards of a multiset, as it reveals plenty of information
about the multiset itself. Let M be a multiset of cardinality n over a commutative

groupoid (G; +). Denote M̃ :=
⊎
I∈(n

2)
MI , and denote NM (x) := 1

M̃
(x) for each

x ∈ G.

Lemma 3.5. Let M be a multiset of cardinality n over G. Then NM (x) = 1M (x) ·(
n−1

2

)
+ δM (x) for some δM : G→ N satisfying

∑
x∈G δM (x) =

(
n
2

)
.

Proof. Fix an n-tuple (m1, . . . ,mn) satisfying M = 〈m1, . . . ,mn〉 and for each
I ∈

(
n
2

)
, let MI := M \ 〈mmin I ,mmax I〉 ] 〈mmin I + mmax I〉. Let us count the

number of times each element of G occurs in the various cards of M . For each
i ∈ [n], there is an occurrence of mi (that has not yet been counted) in MI for
every I ∈

(
n
2

)
such that i /∈ I. Additionally, for each I ∈

(
n
2

)
, there is an oc-

currence of mmin I + mmax I in MI . In other words, each occurrence of x in M
contributes

(
n−1

2

)
to the number 1

M̃
(x), and each I ∈

(
n
2

)
contributes 1 to the

number 1
M̃

(mmin I + mmax I). Let δM : G → N be the map given by the rule

δM (x) = |{I ∈
(
n
2

)
: mmin I +mmax I = x}|. Then clearly

∑
x∈G δM (x) =

(
n
2

)
and

we have 1
M̃

(x) = 1M (x) ·
(
n−1

2

)
+ δM (x) for all x ∈ G. �

Lemma 3.6. Assume that n ≥ 4, and let M and M ′ be multisets of cardinality n
over G. Assume that NM (x) = NM ′(x) for all x ∈ G and there exists y ∈ G such
that NM (y) is not a multiple of

(
n−1

2

)
. Then there exist elements a, b ∈ G such that

M ′ = M \ 〈a〉 ] 〈b〉.

Proof. If M = M ′, then the claim clearly holds with a = b for any a ∈M . Assume
that M 6= M ′. Then there exist distinct elements a and b of G such that 1M (a) 6=
1M ′(a) and 1M (b) 6= 1M ′(b).

Observe that
(
n−1

2

)
<
(
n
2

)
≤ 2 ·

(
n−1

2

)
whenever n ≥ 4 and the second in-

equality holds with equality if and only if n = 4. By Lemma 3.5, there exist
maps δM , δM ′ : G → N such that NM (x) = 1M (x) ·

(
n−1

2

)
+ δM (x) and NM ′(x) =

1M ′(x) ·
(
n−1

2

)
+ δM ′(x) for all x ∈ G and

∑
x∈G δM (x) =

(
n
2

)
=
∑
x∈G δM ′(x). The

assumption that NM (y) is not a multiple of
(
n−1

2

)
implies that δM (x) ≥

(
n−1

2

)
for

at most one x ∈ G and δM (x) < 2 ·
(
n−1

2

)
for all x ∈ G; similarly δM ′(x) ≥

(
n−1

2

)
for

at most one x ∈ G and δM ′(x) < 2 ·
(
n−1

2

)
for all x ∈ G. We may assume, without

loss of generality, that δM (a) <
(
n−1

2

)
. This implies that 1M ′(a) = 1M (a)− 1 and

δM ′(a) = δM (a) +
(
n−1

2

)
≥
(
n−1

2

)
. This in turn implies that δM ′(x) <

(
n−1

2

)
for

all x ∈ G \ {a}; in particular, δM ′(b) <
(
n−1

2

)
. Consequently, 1M (b) = 1M ′(b) − 1

and δM (b) = δM ′(b) +
(
n−1

2

)
≥
(
n−1

2

)
. It also follows that 1M (x) = 1M ′(x) for all

x ∈ G \ {a, b} (for, if there existed an element c ∈ G \ {a, b} such that 1M (c) 6=
1M ′(c), then this would imply, similarly as above, that δM (c) ≥

(
n−1

2

)
, which would

contradict the fact that there is at most one x ∈ G such that δM (x) ≥
(
n−1

2

)
). We
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conclude that 1M ′(a) = 1M (a) − 1, 1M ′(b) = 1M (b) + 1 and 1M ′(x) = 1M (x) for
all x ∈ G \ {a, b}. In other words, M ′ = M \ 〈a〉 ] 〈b〉. �

Theorem 3.7. Assume that (G; +) is a commutative groupoid, and M and M ′

are multisets over G with |M | = |M ′| ≥ 5. Then deckM = deckM ′ if and only if
M = M ′.

Proof. Let n be the common cardinality of M and M ′. It is clear that if M = M ′,
then deckM = deckM ′. For the converse implication, assume that deckM =

deckM ′. Then clearly M̃ = M̃ ′, so NM (x) = NM ′(x) for all x ∈ G. Since∑
x∈G δM (x) =

(
n
2

)
and

(
n−1

2

)
<
(
n
2

)
< 2 ·

(
n−1

2

)
holds whenever n ≥ 5, there

exists y ∈ G such that NM (y) is not a multiple of
(
n−1

2

)
. By Lemma 3.6, there

exist a, b ∈ G such that M ′ = M \ 〈a〉 ] 〈b〉, say, M = 〈m1, . . . ,mn−1, a〉, M ′ =
〈m1, . . . ,mn−1, b〉 for some m1, . . . ,mn−1 ∈ G.

Let us count the number of times each element of G occurs in the multisets M̃
and M̃ ′. Both multisets contain

(
n−1

2

)
occurrences of mi for each i ∈ [n− 1] and

one occurrence of mmin I +mmax I for each I ∈
(
n
2

)
such that n /∈ I. The remaining

elements of M̃ are
(
n−1

2

)
occurrences of a and one occurrence of mi + a for each

i ∈ [n− 1]; while the remaining elements of M̃ ′ are
(
n−1

2

)
occurrences of b and one

occurrence of mi + b for each i ∈ [n− 1]. Since
(
n−1

2

)
> n− 1 whenever n ≥ 5, the

equality M̃ = M̃ ′ may hold only if a = b. We conclude that M = M ′. �

Theorem 3.8. Assume that (G; +) is a commutative groupoid. Let M and M ′ be
multisets of cardinality 4 over G. Then deckM = deckM ′ if and only if one of the
following conditions holds:

(i) M = M ′.
(ii) M = 〈r, s, t, u〉 and M ′ = 〈r, s, t, v〉 for some elements r, s, t, u, v ∈ G satis-

fying x + u = v and x + v = u for all x ∈ {r, s, t} and r + s = s, s + t = t,
t+ r = r.

Proof. Let n = 4. Then
(
n−1

2

)
= 3 = n − 1. It is clear that if M = M ′, then

deckM = deckM ′. If condition (ii) holds, then deckM = deckM ′, as shown in
Example 3.1. For the converse implication, assume that deckM = deckM ′. Then

obviously M̃ = M̃ ′ and NM (x) = NM ′(x) for all x ∈ G.
Assume first that there is y ∈ G such that NM (y) is not a multiple of

(
n−1

2

)
. By

Lemma 3.6, there exist elements u, v ∈ G such that M ′ = M \ 〈u〉 ] 〈v〉. If u = v,
then M = M ′ and we are done. Assume thus that u 6= v. Then M = 〈r, s, t, u〉 and
M ′ = 〈r, s, t, v〉 for some r, s, t ∈ G, and the cards of M and M ′ are

M12 = 〈r + s, t, u〉, M ′12 = 〈r + s, t, v〉,
M13 = 〈r + t, s, u〉, M ′13 = 〈r + t, s, v〉,
M23 = 〈s+ t, r, u〉, M ′23 = 〈s+ t, r, v〉,
M14 = 〈r + u, s, t〉, M ′14 = 〈r + v, s, t〉,
M24 = 〈s+ u, r, t〉, M ′24 = 〈s+ v, r, t〉,
M34 = 〈t+ u, r, s〉, M ′34 = 〈t+ v, r, s〉.

We must have r + u = s + u = t + u = v and r + v = s + v = t + v = u.
(Otherwise we would have M̃ 6= M̃ ′, a contradiction.) Furthermore, r, s and t are
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not all equal. (For, if r = s = t, then r + s = r + t = s+ t and NM (x) would be a
multiple of

(
n−1

2

)
for all x ∈ G, a contradiction.)

Since deckM = deckM ′, there exists a one-to-one correspondence between the
cards of M and the cards of M ′. We are going to determine the possible correspon-
dences. Observe first that MI 6= M ′I for all I ∈

(
n
2

)
. Let us now focus on the card

M14 of M .
Suppose first that M14 = M ′24, i.e., 〈v, s, t〉 = 〈u, r, t〉. This implies that r = v

and s = u. Then M13 = 〈u, u, u〉, and this may correspond only to M ′14 = 〈u, u, t〉
(because the other M ′ij contain v). Thus, t = u. But then every card of M
contains u, so no card of M can be equal to M ′23 = 〈v, v, v〉, and we have reached a
contradiction. We conclude that M14 6= M ′24; in a similar way, we can deduce also
that M24 6= M ′34 and M34 6= M ′14.

Suppose then that M14 = M ′34, i.e., 〈v, s, t〉 = 〈u, r, s〉. This implies that r = v
and t = u. A similar argument as above (now M12 = 〈u, u, u〉, M ′23 = 〈v, v, v〉)
leads to a contradiction. We conclude that M14 6= M ′34; similarly, M24 6= M ′14 and
M34 6= M ′24.

Suppose then that M14 = M ′23, i.e., 〈v, s, t〉 = 〈s + t, r, v〉. This implies that
{s, t} = {s+ t, r}, and we must have {M24,M34} = {M ′12,M

′
13}. If M24 = M ′12 and

M34 = M ′13, then {r, t} = {r+ s, t} and {r, s} = {r+ t, s}. Consequently, r = r+ s
and r = r+ t. From the equality {s, t} = {s+ t, r} we get that s = s+ t and t = r;
or s = r and t = s + t. In either case, it follows that r = s = t, a contradiction.
If M24 = M ′13 and M34 = M ′12, then {r, t} = {r + t, s} and {r, s} = {r + s, t}. By
these equalities and by the equality {s, t} = {s+ t, r}, we have r = s or r = t; and
s = r or s = t; and t = r or t = s. It follows that r = s = t, again a contradiction.
We conclude that M14 6= M ′23; similarly, M24 6= M ′13 and M34 6= M ′12.

Consider then the case that M14 = M ′12, i.e., 〈v, s, t〉 = 〈r + s, t, v〉. Then we
must have M24 = M ′23 and M34 = M ′13, i.e., 〈v, r, t〉 = 〈s + t, r, v〉 and 〈v, r, s〉 =
〈r + t, s, v〉. It follows that r + s = s, s+ t = t, t+ r = r. Therefore, condition (ii)
holds.

Finally, consider the case that M14 = M ′13, i.e, 〈v, s, t〉 = 〈r + t, s, v〉. A similar
argument as in the previous case shows that r+t = t, t+s = s, s+r = r. Swapping
the labels of the elements r and s, we see that condition (ii) holds. This completes
the case analysis.

We have been working under the assumption that there is y ∈ G such that
NM (y) is not a multiple of

(
n−1

2

)
. Now suppose that this is no longer so, i.e.,

NM (x) is a multiple of
(
n−1

2

)
for all x ∈ G. Then M̃ = M̃ ′ = H ]H ]H, where

H = M ] E = M ′ ] E′ and |E| = |E′| = 2. If M = 〈m1,m2,m3,m4〉, then
E ] E ] E = 〈mmin I + mmaxI : I ∈

(
n
2

)
〉; similarly for M ′ and E′. It thus holds

that x + y ∈ E whenever 〈x, y〉 ⊆ M and x + y ∈ E′ whenever 〈x, y〉 ⊆ M ′. Each
one of the elements of E arises in three different ways as a sum of two elements of
M ; each one of the elements of E′ arises in three different ways as a sum of two
elements of M ′.

We have several possibilities concerning the 6-multiset H and its possible par-
titions into a 4-multiset M and a 2-multiset E (which we will refer to as (4, 2)-
partitions of H). The remainder of this proof is an analysis of the different cases
that may arise. For easy reference, these cases are summarised in Table 1, in which
we also present the deck of each multiset M considered. The different configura-
tions (M,E) will be referred to as “types”, which are labeled with codes of the
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H 〈a, b, c, d, e, f〉 〈a, a, b, c, d, e〉 〈a, a, b, b, c, d〉
type I.1 II.1 II.2 II.3 III.1 III.2
M 〈α, β, γ, δ〉 〈a, a, β, γ〉 〈a, β, γ, δ〉 〈b, c, d, e〉 〈α, α, β, γ〉 〈a, b, c, d〉
E 〈ε, ζ〉 〈δ, ε〉 〈a, ε〉 〈a, a〉 〈β, δ〉 〈a, b〉

deck

〈α+ β, γ, δ〉 〈a+ a, β, γ〉 〈a+ β, γ, δ〉 〈a, b, c〉 〈α+ α, β, γ〉 〈a+ b, c, d〉
〈α+ γ, β, δ〉 〈a+ β, a, γ〉 〈a+ γ, β, δ〉 〈a, b, d〉 〈β + γ, α, α〉 〈a+ c, b, d〉
〈α+ δ, β, γ〉 〈a+ β, a, γ〉 〈a+ δ, β, γ〉 〈a, b, e〉 〈α+ β, α, γ〉 〈a+ d, b, c〉
〈β + γ, α, δ〉 〈a+ γ, a, β〉 〈β + γ, a, δ〉 〈a, c, d〉 〈α+ β, α, γ〉 〈b+ c, a, d〉
〈β + δ, α, γ〉 〈a+ γ, a, β〉 〈β + δ, a, γ〉 〈a, c, e〉 〈α+ γ, α, β〉 〈b+ d, a, c〉
〈γ + δ, α, β〉 〈β + γ, a, a〉 〈γ + δ, a, β〉 〈a, d, e〉 〈α+ γ, α, β〉 〈c+ d, a, b〉

H 〈a, a, a, b, c, d〉 〈a, a, b, b, c, c〉 impossible
type IV.1 IV.2 IV.3 V.1 V.2 configuration

M 〈a, a, a, β〉 〈a, a, β, γ〉 〈a, b, c, d〉 〈α, α, β, β〉 〈α, α, β, γ〉 〈α, α, β, β〉
E 〈γ, δ〉 〈a, δ〉 〈a, a〉 〈γ, γ〉 〈β, γ〉 〈γ, δ〉

deck

〈a+ a, a, β〉 〈a+ a, β, γ〉 〈a, a, b〉 〈γ, α, α〉 〈α+ α, β, γ〉 〈α+ α, β, β〉
〈a+ a, a, β〉 〈a+ β, a, γ〉 〈a, a, c〉 〈γ, β, β〉 〈β + γ, α, α〉 〈β + β, α, α〉
〈a+ a, a, β〉 〈a+ β, a, γ〉 〈a, a, d〉 〈γ, α, β〉 〈α+ β, α, γ〉 〈α+ β, α, β〉
〈a+ β, a, a〉 〈a+ γ, a, β〉 〈a, b, c〉 〈γ, α, β〉 〈α+ β, α, γ〉 〈α+ β, α, β〉
〈a+ β, a, a〉 〈a+ γ, a, β〉 〈a, b, d〉 〈γ, α, β〉 〈α+ γ, α, β〉 〈α+ β, α, β〉
〈a+ β, a, a〉 〈β + γ, a, a〉 〈a, c, d〉 〈γ, α, β〉 〈α+ γ, α, β〉 〈α+ β, α, β〉

H 〈a, a, a, b, b, c〉 〈a, a, a, a, b, c〉
type VI.1 VI.2 VI.3 VI.4 VII.1 VII.2
M 〈a, a, a, b〉 〈a, a, a, c〉 〈a, a, b, c〉 〈a, b, b, c〉 〈a, a, a, β〉 〈a, a, b, c〉
E 〈b, c〉 〈b, b〉 〈a, b〉 〈a, a〉 〈a, γ〉 〈a, a〉

deck

〈a+ a, a, b〉 〈b, a, c〉 〈a+ a, b, c〉 〈a, a, c〉 〈a+ a, a, β〉 〈a, a, a〉
〈a+ a, a, b〉 〈b, a, c〉 〈b+ c, a, a〉 〈a, b, b〉 〈a+ a, a, β〉 〈a, b, c〉
〈a+ a, a, b〉 〈b, a, c〉 〈a+ b, a, c〉 〈a, a, b〉 〈a+ a, a, β〉 〈a, a, b〉
〈a+ b, a, a〉 〈b, a, a〉 〈a+ b, a, c〉 〈a, a, b〉 〈a+ β, a, a〉 〈a, a, b〉
〈a+ b, a, a〉 〈b, a, a〉 〈a+ c, a, b〉 〈a, b, c〉 〈a+ β, a, a〉 〈a, a, c〉
〈a+ b, a, a〉 〈b, a, a〉 〈a+ c, a, b〉 〈a, b, c〉 〈a+ β, a, a〉 〈a, a, c〉

H 〈a, a, a, b, b, b〉 〈a, a, a, a, b, b〉 〈a, a, a, a, a, b〉 〈a, a, a, a, a, a〉
type VIII.1 IX.1 IX.2 IX.3 X.1 XI.1

M 〈α, α, α, β〉 〈a, a, a, a〉 〈a, a, a, b〉 〈a, a, b, b〉 〈a, a, a, b〉 〈a, a, a, a〉
E 〈β, β〉 〈b, b〉 〈a, b〉 〈a, a〉 〈a, a〉 〈a, a〉

deck

〈β, α, α〉 〈b, a, a〉 〈a+ a, a, b〉 〈a, a, a〉 〈a, a, b〉 〈a, a, a〉
〈β, α, α〉 〈b, a, a〉 〈a+ a, a, b〉 〈a, b, b〉 〈a, a, b〉 〈a, a, a〉
〈β, α, α〉 〈b, a, a〉 〈a+ a, a, b〉 〈a, a, b〉 〈a, a, b〉 〈a, a, a〉
〈β, α, β〉 〈b, a, a〉 〈a+ b, a, a〉 〈a, a, b〉 〈a, a, a〉 〈a, a, a〉
〈β, α, β〉 〈b, a, a〉 〈a+ b, a, a〉 〈a, a, b〉 〈a, a, a〉 〈a, a, a〉
〈β, α, β〉 〈b, a, a〉 〈a+ b, a, a〉 〈a, a, b〉 〈a, a, a〉 〈a, a, a〉

Table 1. The different types of multisets considered in the proof
of Theorem 3.8.

form X.Y , where X is a Roman numeral and Y is an Arabic numeral. We will also
write simply “M is of type X.Y ” to mean “(M,E) is of type X.Y ”.

Before starting the case analysis, let us first rule out an impossible configuration
that may arise as a (4, 2)-partition of H. If (M,E) = (〈α, α, β, β〉, 〈γ, δ〉) for some
(not necessarily pairwise distinct) elements α, β, γ, δ ∈ G such that γ 6= δ, then
〈α+ β, α, β〉 is a card of M with multiplicity 4 (if α 6= β) or 6 (if α = β). But then
α+ β should be equal to both γ and δ, a contradiction which shows that this case
does not occur.

Case 1: H = 〈a, b, c, d, e, f〉 for some pairwise distinct elements a, b, c, d, e, f ∈ G.
The (4, 2)-partitions of H are of the form (〈α, β, γ, δ〉, 〈ε, ζ〉) (referred to as type
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I.1), where {α, β, γ, δ, ε, ζ} = {a, b, c, d, e, f}. Thus, we may assume that M =
〈α, β, γ, δ〉, E = 〈ε, ζ〉, M ′ = 〈α′, β′, γ′, δ′〉, E′ = 〈ε′, ζ ′〉 with {α, β, γ, δ, ε, ζ} =
{α′, β′, γ′, δ′, ε′, ζ ′} = {a, b, c, d, e, f}.

Suppose, on the contrary, that M 6= M ′. Then 2 ≤ |M ∩M ′| ≤ 3. If |M ∩M ′| =
2, then we may assume, without loss of generality, that M ′ = 〈α, β, ε, ζ〉. Then
α+ β ∈ E ∩E′ = 〈ε, ζ〉 ∩ 〈γ, δ〉 = ∅, a contradiction. If |M ∩M ′| = 3, then we may
assume, without loss of generality, that M ′ = 〈α, β, γ, ε〉. Then α + β ∈ E ∩ E′ =
〈ε, ζ〉 ∩ 〈δ, ζ〉 = 〈ζ〉; thus α+β = ζ. It follows that 〈ζ, γ, ε〉 is a card of M ′, but this
cannot be a card of M , because ε and ζ do not occur together in any card of M .
We have reached again a contradiction. We conclude that M = M ′.

Case 2: H = 〈a, a, b, c, d, e〉 for some pairwise distinct elements a, b, c, d, e ∈
G. The (4, 2)-partitions of H are the following: (〈a, a, β, γ〉, 〈δ, ε〉) (type II.1),
(〈a, β, γ, δ〉, 〈a, ε〉) (type II.2), and (〈b, c, d, e〉, 〈a, a〉) (type II.3), where {β, γ, δ, ε} =
{b, c, d, e}.

Consider first the case that M is of type II.1 and M ′ is of type II.2 or II.3. Then
the deck of M has repeated cards while the cards of M ′ are all pairwise distinct;
hence deckM 6= deckM ′. We have reached a contradiction, which shows that this
case is not possible.

Consider then the case that M = 〈a, β, γ, δ〉 is of type II.2 and M ′ = 〈b, c, d, e〉
is of type II.3. Every card of M ′ contains exactly one occurrence of a. In order to
have exactly one occurrence of a in every card of M , we must have a+β = a+γ =
a+ δ = a; consequently β+ γ = β+ δ = γ + δ = ε. The fact that M ′ is of type 2.C
implies x+y = a for all distinct x, y ∈ {b, c, d, e}. We have reached a contradiction,
which shows that this case is not possible.

Consider then the case that M = 〈a, a, β, γ〉 and M ′ = 〈a, a, β′, γ′〉 are both of
type II.1, with {β, γ, δ, ε} = {β′, γ′, δ′, ε′} = {b, c, d, e}. The only card of M with
no occurrence of a is 〈a+ a, β, γ〉, and the only card of M ′ with no occurrence of a
is 〈a+ a, β′, γ′〉. These must be equal; hence {β, γ} = {β′, γ′}, that is, M = M ′.

Consider then the case that M and M ′ are both of type II.2. Suppose, on
the contrary, that M 6= M ′. We may assume, without loss of generality, that
M = 〈a, β, γ, δ〉, M ′ = 〈a, β, γ, ε〉, where {β, γ, δ, ε} = {b, c, d, e}. Then β + γ ∈
E ∩ E′ = 〈a, ε〉 ∩ 〈a, δ〉 = 〈a〉. Then 〈a, a, δ〉 is a card of M , but this is not a card
of M ′. We have arrived in a contradiction, and we conclude that M = M ′.

Finally, if M and M ′ are both of type II.3, then M = M ′.
Case 3: H = 〈a, a, b, b, c, d〉 for some pairwise distinct elements a, b, c, d ∈ G.

The possible (4, 2)-partitions of H are the following: (〈α, α, β, γ〉, 〈β, δ〉 (type III.1)
and (〈a, b, c, d〉, 〈a, b〉) (type III.2), where {α, β} = {a, b} and {γ, δ} = {c, d}. (The
(4, 2)-partition (〈a, a, b, b〉, 〈c, d〉) of H is not possible, as noted above.)

Consider first the case that M = 〈α, α, β, γ〉 is of type III.1 and M ′ = 〈a, b, c, d〉
is of type III.2. Then α + β, α + γ, β + γ ∈ E ∩ E′ = 〈β, δ〉 ∩ 〈a, b〉 = 〈β〉, but
then δ would appear only at most once in the cards of M . We have arrived in a
contradiction, which shows that this case is not possible.

Consider then the case that M = 〈α, α, β, γ〉 and M ′ = 〈α′, α′, β′, γ′〉 are both
of type III.1, with {α, β} = {α′, β′} = {a, b}, {γ, δ} = {γ′, δ′} = {c, d}. If α′ = β
and γ′ = δ, then α+ β = α′ + β′ ∈ E ∩E′ = 〈β, δ〉 ∩ 〈α, γ〉 = ∅, a contradiction. If
α′ = α and γ′ = δ, then α+α, α+β ∈ E ∩E′ = 〈β, δ〉∩ 〈β, γ〉 = 〈β〉; consequently,
〈β, β, γ〉 is a card of M but not a card of M ′, a contradiction. If α′ = β and γ′ = γ,
then α + β, β + γ ∈ E ∩ E′ = 〈β, δ〉 ∩ 〈α, δ〉 = 〈δ〉; but then δ will occur at least
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4 times in the cards of M ′, a contradiction. We are left with the case that α′ = α
and γ′ = γ, that is, M = M ′.

Finally, if M and M ′ are both of the form III.2, then M = M ′.
Case 4: H = 〈a, a, a, b, c, d〉 for some pairwise distinct elements a, b, c, d ∈

G. The (4, 2)-partitions of H are the following: (〈a, a, a, β〉, 〈γ, δ〉) (type IV.1),
(〈a, a, β, γ〉, 〈a, δ〉) (type IV.2), and (〈a, b, c, d〉, 〈a, a〉) (type IV.3), where {β, γ, δ} =
{b, c, d}.

Consider first the case that M is of type IV.1 or IV.2 and M ′ is of type IV.3.
Then M has repeated cards while the cards of M ′ are pairwise distinct; hence
deckM 6= deckM . We have reached a contradiction, which shows that this case is
not possible.

Consider then the case that M = 〈a, a, a, β〉 is of type IV.1 and M ′ = 〈a, a, β′, γ′〉
is of type IV.2, with {β, γ, δ} = {β′, γ′, δ′} = {b, c, d}. If {β} ∩ {β′, γ′} = ∅, then
actually {β′, γ′} = {γ, δ} and δ′ = β. Then we would have a + a ∈ E ∩ E′ =
〈γ, δ〉 ∩ 〈a, β〉 = ∅, a contradiction. Thus, we may assume that β ∈ {β′, γ′}. Then
we have that a + a, a + β ∈ E ∩ E′〈γ, δ〉 ∩ 〈a, δ′〉 = 〈δ′〉. On the other hand, it
follows from the fact that M is of type IV.1 that a+ a 6= a+ β. We have reached
again a contradiction, and we conclude that this case is not possible.

Consider then the case that M = 〈a, a, a, β〉 and M ′ = 〈a, a, a, β′〉 are both
of type IV.1, with {β, γ, δ} = {β′, γ′, δ′} = {b, c, d}. Since a + a ∈ E ∩ E′ =
〈γ, δ〉 ∩ 〈γ′, δ′〉, we have that a + a 6= a. Therefore, the only cards of M with a
single occurrence of a are the three copies of 〈a+ a, a, β〉, and the only cards of M ′

with a single occurrence of a are the three copies of 〈a+ a, a, β′〉. This implies that
β = β′; hence M = M ′.

Consider then the case that M = 〈a, a, β, γ〉 and M ′ = 〈a, a, β′, γ′〉 are both of
type IV.2, with {β, γ, δ} = {β′, γ′, δ′} = {b, c, d}. Suppose, on the contrary, that
M 6= M ′. We may assume, without loss of generality, that β = β′ and γ′ = δ.
Then a + a, a + β ∈ E ∩ E′ = 〈a, δ〉 ∩ 〈a, γ〉 = 〈a〉. Consequently, 〈a, β, γ〉 has
multiplicity exactly 1 in the deck of M but it has multiplicity 2 in the deck of M ′,
a contradiction. We conclude that M = M ′.

Finally, if M and M ′ are both of type IV.3, then M = M ′.
Case 5: H = 〈a, a, b, b, c, c〉 for some pairwise distinct elements a, b, c ∈ G.

The (4, 2)-partitions of H are the following: (〈α, α, β, β〉, 〈γ, γ〉) (type V.1) and
(〈α, α, β, γ〉, 〈β, γ〉) (type V.2), where {α, β, γ} = {a, b, c}.

Consider first the case that M = 〈α, α, β, β〉 is of type V.1 and M ′ =
〈α′, α′, β′, γ′〉 is of type V.2, with {α, β, γ} = {α′, β′, γ′} = {a, b, c}. The ele-
ment γ occurs exactly once in every card of M . One of the cards of M ′, namely
〈β′ + γ′, α′, α′〉, has two occurrences of α′; hence α′ 6= γ. Suppose β′ = γ; in
other words, {α′, γ′} = {α, β}. Then we must have β′ + γ′ = α′ + β′ = γ = β′;
consequently, α′ + α′ = α′ + γ′ = γ′ 6= γ, but this contradicts the fact that
α + α = α + β = β + β = γ, implied by the fact that M is of type V.1. Thus, we
remain with the possibility that γ′ = γ; in other words, {α′, β′} = {α, β}. Then
β′ + γ′ = α′ + γ′ = γ = γ′; consequently, α′ + α′ = α′ + β′ = β′ 6= γ, and we arrive
similarly in a contradiction. We conclude that this case is not possible.

Consider then the case that M = 〈α, α, β, β〉 and M ′ = 〈α′, α′, β′, β′〉 are both
of type V.1, with {α, β, γ} = {α′, β′, γ′} = {a, b, c}. Then the unique element
occurring exactly once in every card of M is γ, and the unique element occurring
exactly once in every card of M ′ is γ′. Hence γ = γ′, that is, M = M ′.
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Consider finally the case that M = 〈α, α, β, γ〉 and M ′ = 〈α′, α′, β′, γ′〉 are both
of type V.2, with {α, β, γ} = {α′, β′, γ′} = {a, b, c}. Suppose, on the contrary, that
M 6= M ′. We may assume, without loss of generality, that M ′ = 〈β, β, α, γ〉. Then
we have that α + β, α + γ ∈ E ∩ E′ = 〈β, γ〉 ∩ 〈α, γ〉 = 〈γ〉, and we will have too
many γ’s occurring in the cards of M , a contradiction. We conclude that M = M ′.

Case 6: H = 〈a, a, a, b, b, c〉 for some pairwise distinct elements a, b, c ∈ G.
The possible (4, 2)-partitions of H are the following: (〈a, a, a, b〉, 〈b, c〉) (type VI.1),
(〈a, a, a, c〉, 〈b, b〉) (type VI.2), (〈a, a, b, c〉, 〈a, b〉) (type VI.3), and (〈a, b, b, c〉, 〈a, a〉)
(type VI.4). (The (4, 2)-partition (〈a, a, b, b〉, 〈a, c〉) of H is not possible, as noted
above.)

IfM andM ′ are of the same type, VI.1, VI.2, VI.3, or VI.4, then clearlyM = M ′.
Suppose then, on the contrary, that M and M ′ are of different types.

Assume that M is of type VI.4. Then a + b = a + c = b + c = b + b = a. If
M ′ is of type VI.1, then a + b 6= a, a contradiction. If M ′ is of type VI.2, then
a+ a = a+ c = b, a contradiction. If M ′ is of type VI.3, then a+ b and a+ c are
not both equal to a, a contradiction.

Assume that M is of type VI.2. Then a + a = b. If M ′ is of type VI.1, then
〈b, a, b〉 is a card of M ′ but it is not a card of M , a contradiction. If M ′ is of type
VI.3, then 〈b, b, c〉 is a card of M ′ but it is not a card of M , a contradiction.

Assume that M is of type VI.1 and M ′ is of type VI.3. The fact that M is of
type VI.1 implies {a+ a, a+ b} = {b, c}. The fact that M ′ is of type VI.3 implies
{a+ a, a+ b} ⊆ {a, b}, a contradiction.

Case 7: H = 〈a, a, a, a, b, c〉 for some pairwise distinct elements a, b, c ∈ G. The
possible (4, 2)-partitions of H are the following: (〈a, a, a, β〉, 〈a, γ〉) (type VII.1)
and (〈a, a, b, c〉, 〈a, a〉) (type VII.2), where {β, γ} = {b, c}. (The (4, 2)-partition
(〈a, a, a, a〉, 〈b, c〉) of G is not possible, as noted above.)

Consider first the case that M is of type VII.1 and M ′ is of type VII.2. Then
〈a, a, a〉 has multiplicity 1 in the deck of M ′, but its multiplicity is either 0 or 3 in
the deck of M , a contradiction. We conclude that this case is not possible.

Consider then the case that M and M ′ are both of type VII.1. If M = M ′, then
we are done. Assume that M 6= M . We may assume that M = 〈a, a, a, b〉 and
M ′ = 〈a, a, a, c〉. Then a + a ∈ E ∩ E′ = 〈a, c〉 ∩ 〈a, b〉 = 〈a〉. This implies that
a+ b = c and a+ c = b. Choosing r := a, s := a, t := a, u := b, v := c, we see that
condition (ii) holds.

Finally, if M and M ′ are both of type VII.2, then M = M ′.
Case 8: H = 〈a, a, a, b, b, b〉 for some distinct elements a, b ∈ G. The (4, 2)-

partitions of H are of the form (〈α, α, α, β〉, 〈β, β〉) (type VIII.1), where {α, β} =
{a, b}. (The (4, 2)-partition (〈a, a, b, b〉, 〈a, b〉) of G is not possible, as noted above.)

Suppose, on the contrary, that M 6= M ′. We may assume that M = 〈a, a, a, b〉
and M ′ = 〈b, b, b, a〉. Then a+ a = a+ b = b and b+ b = b+ a = a, a contradiction.
We conclude that M = M ′.

Case 9: H = 〈a, a, a, a, b, b〉 for some distinct elements a, b ∈ G. The (4, 2)-
partitions of H are the following: (〈a, a, a, a〉, 〈b, b〉) (type IX.1), (〈a, a, a, b〉, 〈a, b〉)
(type IX.2), and (〈a, a, b, b〉, 〈a, a〉) (type IX.3).

If M and M ′ are of the same type, IX.1, IX.2, or IX.3, then clearly M = M ′.
Suppose, on the contrary, that M and M ′ are of different types.
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Assume that M is of type IX.1. Then a + a = b. If M ′ is of type IX.2, then
〈b, a, b〉 is a card of M ′, but this is not a card of M , a contradiction. If M ′ is of
type IX.3, then a+ a = a, a contradiction.

Assume that M is of type IX.2. Then a+ a 6= a+ b. If M ′ is of type IX.3, then
a+ a = a+ b = b+ b = a, a contradiction.

Case 10: H = 〈a, a, a, a, a, b〉 for some distinct elements a, b ∈ G. The only
possible (4, 2)-partition of H is (〈a, a, a, b〉, 〈a, a〉) (type X.1). (The (4, 2)-partition
(〈a, a, a, a〉, 〈a, b〉) of H is not possible, as noted above.) Therefore, M = M ′.

Case 11: H = 〈a, a, a, a, a, a〉 for some a ∈ G. The only (4, 2)-partition of H is
(〈a, a, a, a〉, 〈a, a〉) (type XI.1), and it holds that M = M ′.

We have exhausted all possible cases, and have arrived at the desired conclusion.
This completes the proof of the theorem. �

Theorem 3.9. Assume that (G; +) is a commutative groupoid. Let M and M ′ be
multisets of cardinality 3 over G. Then deckM = deckM ′ if and only if one of the
following conditions holds:

(i) M = M ′.
(ii) M = 〈r, s, t〉, M ′ = 〈r, r + s, r + t〉 for some elements r, s, t ∈ G satisfying

r + (r + s) = s, r + (r + t) = t, (r + s) + (r + t) = s+ t.
(iii) M = 〈r, s, t〉, M ′ = 〈r+s, r+ t, s+ t〉 for some elements r, s, t ∈ G satisfying

(r + s) + (r + t) = r, (r + s) + (s+ t) = s, (r + t) + (s+ t) = t.

Proof. It is clear that if M = M ′, then deckM = deckM ′. If condition (ii) or (iii)
holds, then deckM = deckM ′, as shown in Examples 3.2 and 3.3.

For the converse implication, assume that deckM = deckM ′. Assume that
M = 〈a, b, c〉 and M ′ = 〈α, β, γ〉. Then

deckM = 〈〈a, b+ c〉, 〈b, a+ c〉, 〈c, a+ b〉〉,
deckM ′ = 〈〈α, β + γ〉, 〈β, α+ γ〉, 〈γ, α+ β〉〉.

Relabeling the elements of M ′ if necessary, we may assume that

〈α, β + γ〉 = 〈a, b+ c〉, 〈β, α+ γ〉 = 〈b, a+ c〉, 〈γ, α+ β〉 = 〈c, a+ b〉.

If (α, β + γ) = (a, b + c), (β, α + γ) = (b, a + c), (γ, α + β) = (c, a + b), then
M = M ′ and we are done.

If (α, β + γ) = (a, b+ c), (β, α+ γ) = (b, a+ c), (γ, α+ β) = (a+ b, c), then we
have c = α + β = a + b = γ. Hence M = M ′ and we are done. If (α, β + γ) =
(a, b + c), (β, α + γ) = (a + c, b), (γ, α + β) = (c, a + b) or (α, β + γ) = (b + c, a),
(β, α + γ) = (b, a+ c), (γ, α + β) = (c, a+ b), then a similar argument shows that
M = M ′ and we are done.

If (α, β + γ) = (a, b + c), (β, α + γ) = (a + c, b), (γ, α + β) = (a + b, c), then
a+(a+ b) = α+γ = b, a+(a+ c) = α+β = c and (a+ b)+(a+ c) = γ+β = b+ c.
Choosing r := a, s := b, t := c, we see that condition (ii) holds and we are done.
We argue similarly in the case when (α, β + γ) = (b+ c, a), (β, α+ γ) = (b, a+ c),
(γ, α+ β) = (a+ b, c) or (α, β + γ) = (b+ c, a), (β, α+ γ) = (a+ c, b), (γ, α+ β) =
(c, a+ b) to show that condition (ii) holds.

We are left with the case that (α, β + γ) = (b + c, a), (β, α + γ) = (a + c, b),
(γ, α+β) = (a+b, c). Then (a+b)+(a+c) = γ+β = a, (a+b)+(b+c) = γ+α = b
and (a + c) + (b + c) = β + α = c. Choosing r := a, s := b, t := c, we see that
condition (iii) holds. �
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Theorem 3.10. Assume that (G; +) is a commutative groupoid. Let M and M ′ be
multisets of cardinality 2 over G. Then deckM = deckM ′ if and only if M = 〈r, s〉,
M ′ = 〈t, u〉 for some elements r, s, t, u ∈ G such that r + s = t+ u.

Proof. Obvious. �

Remark 3.11. Let (G; +) be a commutative groupoid. Every multiset of cardinality
2 over G is reconstructible if and only if for all a, b, c, d ∈ G, it holds that

a+ b = c+ d ⇐⇒ (a, b) = (c, d) or (a, b) = (d, c).

Examples of groupoids satisfying this condition include the free commutative group-
oids (see the paper by Prešić [11]).

3.3. Open problems. We have completely solved the reconstruction problem for
multisets over commutative groupoids. We conclude this section by suggesting
some possible directions for future research. A common variant of reconstruction
problems is the so-called set reconstruction problem: we define deck as a set of
cards instead of a multiset of cards and then ask whether an object is uniquely
determined (up to isomorphism) by its set of cards. The set reconstruction problem
for multisets over commutative groupoids is an open problem, and it may be worth
investigating.

Another related question is the following: Is reconstruction possible from a few
cards only? More precisely, for a commutative groupoid (G; +) and an integer
n ≥ 2, what is the smallest number m such that every multiset M of cardinality n
over G is uniquely determined by any m of its cards? This remains an open problem,
but let us make a few simple observations. This number may be as large as

(
n
2

)
,

i.e., all cards are needed for reconstruction, as the following example illustrates.

Example 3.12. Let (G; +) be the 2-element group of addition modulo 2, and let
n = 4. Let M = 〈1, 1, 1, 1〉, M ′ = 〈0, 0, 1, 1〉. Then

deckM = 〈〈0, 1, 1〉, 〈0, 1, 1〉, 〈0, 1, 1〉, 〈0, 1, 1〉, 〈0, 1, 1〉, 〈0, 1, 1〉〉,
deckM = 〈〈0, 1, 1〉, 〈0, 1, 1〉, 〈0, 1, 1〉, 〈0, 1, 1〉, 〈0, 1, 1〉, 〈0, 0, 0〉〉.

Even though every 4-multiset over G is reconstructible by Theorem 3.8, M and M ′

cannot be reconstructed from 5 cards only: the decks of both M and M ′ include 5
copies of 〈0, 1, 1〉.

If (G; +) is a commutative group, then 2 cards do not suffice for reconstruction.
This clearly holds for 2-multisets, and the following example shows that this is also
the case for multisets of cardinality at least 3.

Example 3.13. Let (G; +) be a commutative group and assume that n ≥ 3. Let
M = 〈m1, . . . ,mn〉, M ′ = 〈m1 +m2,m2 +m3,−m2,m4, . . . ,mn〉. Then

〈m1 +m2,m3,m4, . . . ,mn〉 and 〈m1,m2 +m3,m4, . . . ,mn〉

are cards of both M and M ′.

4. Reconstruction problem for functions of several arguments –
the case of affine functions

As mentioned in the introduction, the reconstruction problem for multisets over
commutative groupoids arose from a completely different reconstruction problem
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formulated for functions of several arguments. In the special case of affine func-
tions over nonassociative semirings, the reconstruction problem for functions re-
duces to the reconstruction problem for multisets over commutative groupoids. In
this section, we will apply our results on the reconstructibility of multisets to the
reconstruction problem for functions.

4.1. Functions of several arguments and identification minors. Let A and
B be arbitrary sets with at least two elements. A function (of several arguments)
from A to B is a map f : An → B for some positive integer n, called the arity of f .
Functions of several arguments from A to A are called operations on A. We denote

the set of all n-ary functions from A to B by F (n)
AB , and we denote the set of all

functions from A to B of any finite arity by FAB ; in other words, F (n)
AB = BA

n

and

FAB =
⋃
n≥1 F

(n)
AB . For 1 ≤ i ≤ n, the i-th n-ary projection on A is the operation

(a1, . . . , an) 7→ ai for all (a1, . . . , an) ∈ An.
Let f : An → B. For i ∈ [n], the i-th argument of f is essential, or f depends

on the i-th argument, if there exist tuples (a1, . . . , an), (b1, . . . , bn) ∈ An such that
aj = bj for all j ∈ [n] \ {i} and f(a1, . . . , an) 6= f(b1, . . . , bn).

Two functions f, g : An → B are equivalent, denoted f ≡ g, if there exists a bijec-
tion σ : [n]→ [n] such that f(a1, . . . , an) = g(aσ(1), . . . , aσ(n)) for all (a1, . . . , an) ∈
An.

Let n ≥ 2, and let f : An → B. For each I ∈
(
n
2

)
, we define the function

fI : An−1 → B by the rule

fI(a1, . . . , an−1) = f(a1, . . . , amax I−1, amin I , amax I , . . . , an−1).

Note that amin I occurs twice on the right side of the above equality, namely, at the
two positions indexed by the elements of I. We will refer to the function fI as an
identification minor of f . This name is motivated by the fact that fI is obtained
from f by identifying the arguments indexed by the couple I.

Lemma 4.1 (Willard [14, Lemma 1.2]). Let A and B nonempty sets, and let
f : An → B. Assume that f depends on all of its arguments. If n > |A|, then there
exists I ∈

(
n
2

)
such that fI depends on at least n− 2 arguments.

4.2. Reconstruction problem for functions of several arguments. Assume
that n ≥ 2 and let f : An → B. The deck of f , denoted deck f , is the multiset
〈fI/≡ : I ∈

(
n
2

)
〉 of the equivalence classes of the identification minors of f . Any

element of the deck of f is called a card of f . A function g : An → B is a reconstruc-
tion of f , if deck f = deck g. A function is reconstructible if it is equivalent to all of
its reconstructions. A class C ⊆ FAB of functions is reconstructible if all members
of C are reconstructible. A class C ⊆ FAB is weakly reconstructible if for every
f ∈ C, all reconstructions of f that are members of C are equivalent to f . A class
C ⊆ FAB is recognizable if all reconstructions of the members of C are members of
C. Note that if a class of functions is recognizable and weakly reconstructible, then
it is reconstructible.

This reconstruction problem was formulated and some results, both positive and
negative, on the reconstructibility of functions were presented in [7]. The reader is
referred to this paper for more details, motivations and background information.
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4.3. On the reconstructibility of affine functions. By a nonassociative right
semiring we mean an algebra (G; +, ·) with binary operations + and · called addition
and multiplication, respectively, such that

• (G; +) is a commutative monoid with neutral element 0 (0 + a = a+ 0 = a),
• (G; ·) is a groupoid with right identity 1 (a · 1 = a),
• multiplication right distributes over addition ((a+ b) · c = a · c+ b · c),
• multiplication on the right by 0 annihilates G (a · 0 = 0).

A nonassociative right semiring (G; +, ·) is cancellative if the additive monoid (G; +)
is cancellative, i.e., a+b = a+c implies b = c. We will denote multiplication simply
be concatenation.

The attribute “nonassociative” refers to the fact that we do not require that
multiplication be associative, contrary to the usual practice with semirings. The at-
tribute “right” refers to the fact that we only stipulate right multiplicative identity,
right distributivity, and right annihilation. A nonassociative left semiring could
be defined analogously, but we will not need this notion here. Examples of nonas-
sociative right semirings include semirings, rings, fields, and bounded distributive
lattices. Rings and fields are cancellative.

A function f : Gn → G is affine over (G; +, ·) if

(1) f(x1, . . . , xn) = a1x1 + · · ·+ anxn + c,

for some a1, . . . , an, c ∈ G. If c = 0, then f is linear.

Lemma 4.2. Let (G; +, ·) be a nonassociative right semiring. Let f be an affine
function over (G; +, ·). If f is linear or if (G; +, ·) is cancellative, then f has a
unique representation of the form (1).

Proof. Let f : Gn → G, f(x1, . . . , xn) = a1x1 + · · · + anxn + c. Assume that
f(x1, . . . , xn) = a′1x1 + · · · + a′nxn + c′ for some a′1, . . . , a

′
n, c
′ ∈ G. Then c =

f(0, . . . , 0) = c′, and for every i ∈ [n], ai + c = f(ei) = a′i + c′ = a′i + c, where ei
denotes the n-tuple in which the i-th entry is 1 and the remaining entries are 0. If
f is linear (i.e., c = 0) or if (G; +, ·) is cancellative, then ai = a′i for all i ∈ [n]. �

Let f(x1, . . . , xn) = a1x1 + · · ·+anxn+c. Denote by Cf the multiset 〈a1, . . . , an〉
of the coefficients of the non-constant terms of f .

Lemma 4.3. Let (G; +, ·) be a nonassociative right semiring. Let f, g : Gn → G
be affine functions over (G; +, ·). Assume that f and g are linear or (G; +, ·) is
cancellative. Then f ≡ g if and only if Cf = Cg and the constant terms of f and
g are equal.

Proof. Let f(x1, . . . , xn) =
∑n
i=1 aixi + c and g(x1, . . . , xn) =

∑n
i=1 bixi + d. As-

sume first that f ≡ g. Then there exists a permutation σ : [n] → [n] such that
f(a1, . . . , an) = g(aσ(1), . . . , aσ(n)) for all (a1, . . . , an) ∈ Gn. Thus, f(x1, . . . , xn) =∑n
i=1 bixσ(i) + d. By Lemma 4.2, c = d and ai = bσ−1(i) for all i ∈ [n]. Thus,

Cf = 〈a1, . . . , an〉 = 〈bσ−1(1), . . . , bσ−1(n)〉 = Cg.
For the converse implication, assume that c = d and Cf = Cg. Then there exists

a permutation σ : [n]→ [n] such that ai = bσ(i) for all i ∈ [n]. We have

f(x1, . . . , xn) = a1x1 + · · ·+ anxn + c = bσ(1)x1 + · · ·+ bσ(n)xn + d

= b1xσ−1(1) + · · ·+ bnxσ−1(n) + d = g(xσ−1(1), . . . , xσ−1(n)).

Thus f ≡ g. �



RECONSTRUCTING MULTISETS OVER COMMUTATIVE GROUPOIDS 15

For a multiset M over G and c ∈ G, with |M | = n, denote by FM,c the set
{f : Gn → G : Cf = M, f(0, . . . , 0) = c}. It is clear from the definition and from
Lemma 4.3 that FM,c = FM ′,c′ if and only if M = M ′ and c = c′.

Lemma 4.4. Let f : Gn → G be an affine function over a nonassociative right
semiring (G; +, ·). Then deckCf = 〈CfI : I ∈

(
n
2

)
〉 and deck f = 〈FMI ,c : I ∈

(
n
2

)
〉,

where c = f(0, . . . , 0) and (MI)I∈(n
2)

is an indexed family satisfying deckCf =

〈MI : I ∈
(
n
2

)
〉.

Proof. Let f(x1, . . . , xn) = a1x1 + · · · + anxn + c. Then Cf = 〈a1, . . . , an〉 and
c = f(0, . . . 0). For each I ∈

(
n
2

)
, let (Cf )I := Cf \〈amin I , amax I〉]〈amin I +amax I〉.

Then deckCf = 〈(Cf )I : I ∈
(
n
2

)
〉. For each I ∈

(
n
2

)
,

fI(x1, . . . , xn−1) =

(amin I + amax I)xmin I +

min I−1∑
i=1

aixi +

max I−1∑
i=min I+1

aixi +

n∑
i=max I+1

aixi−1.

Thus CfI = (Cf )I . We conclude that deckCf = 〈(Cf )I : I ∈
(
n
2

)
〉 = 〈CfI : I ∈

(
n
2

)
〉

and deck f = 〈fI/≡ : I ∈
(
n
2

)
〉 = 〈FCfI

,c : I ∈
(
n
2

)
〉 = 〈F(Cf )I ,c : I ∈

(
n
2

)
〉. �

Theorem 4.5. Let f, g : Gn → G be affine functions over a nonassociative right
semiring (G; +, ·) with n ≥ 4. If f and g are linear or if (G; +, ·) is cancellative,
then deck f = deck g if and only if f ≡ g.

Proof. Let

f(x1, . . . , xn) = a1x1 + · · ·+ anxn + c,

g(x1, . . . , xn) = b1x1 + · · ·+ bnxn + d,

for some a1, . . . , an, b1, . . . , bn, c, d ∈ G. We assume that c = d = 0 or (G; +, ·) is
cancellative.

It is clear that if f ≡ g then deck f = deck g. Assume that deck f = deck g. Since
fI(0, . . . , 0) = f(0, . . . , 0) = c and gI(0, . . . , 0) = g(0, . . . 0) = d for all I ∈

(
n
2

)
, we

must have that c = d.
By Lemma 4.4, deck f = 〈FMI ,c : I ∈

(
n
2

)
〉 and deck g = 〈FM ′I ,c : I ∈

(
n
2

)
〉, where

(MI)I∈(n
2)

and (M ′I)I∈(n
2)

are indexed families satisfying 〈MI : I ∈
(
n
2

)
〉 = deckCf

and 〈M ′I : I ∈
(
n
2

)
〉 = deckCg. Since FM,c = FM ′,c if and only if M = M ′, we have

that deckCf = deckCg. If n ≥ 5, then Theorem 3.7 implies that Cf = Cg. Since
(G; +) is associative, Theorem 3.8 implies, in light of Example 3.1, that Cf = Cg
in the case that n = 4. Applying Lemma 4.3, we conclude that f ≡ g. �

Theorem 4.5 asserts that the class of linear functions of arity at least 4 over any
nonassociative right semiring (G; +, ·) is weakly reconstructible. Furthermore, if
(G; +, ·) is cancellative, then the class of affine functions of arity at least 4 over
(G; +, ·) is weakly reconstructible.

Let us consider the special case when (G,+, ·) is a finite field of order q = pk

(p prime). It is well known that every operation on a finite field is a polynomial
function. Moreover, each function f : Gn → G is induced by a unique polynomial
in n variables where every exponent of every occurrence of every variable is at most
q − 1. Such a polynomial is referred to as the canonical polynomial of f . It is easy
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to verify that a polynomial function f depends on the i-th argument if and only if
the variable xi occurs in the canonical polynomial of f .

Lemma 4.6. Assume that (G; +, ·) is a finite field of order q = pk. If n > max(q, 3)
and f : Gn → G is not affine, then there exists I ∈

(
n
2

)
such that fI is not affine.

Proof. The canonical polynomial of f can be written as P =
∑

r∈{0,...,q−1}n arx
r,

where r = (r1, . . . , rn) and xr = xr11 x
r2
2 · · ·xrnn . Let Paff be the polynomial compris-

ing the monomials of P of total degree at most 1, and let Pnon be the polynomial
comprising the monomials of Pg of total degree at least 2, i.e.,

Paff = a0 +

n∑
i=1

aei
xi, Pnon =

∑
r∈{0,...,q−1}n\{0,e1,...,en}

arx
r,

where 0 = (0, . . . , 0) and ei is the n-tuple in which the i-th entry is 1 and the
remaining entries are 0. Let faff , fnon : Gn → G be the functions induced by the
polynomials Pagg and Pnon, respectively. Then clearly P = Paff + Pnon and f =
faff + fnon (pointwise addition of functions). Furthermore, for all I ∈

(
n
2

)
, we have

fI = (faff)I + (fnon)I . Since f is not affine, it holds that Pnon 6= 0.
Assume first that Pnon has a monomial M = arx

r in which there occur at most
n−2 variables, i.e., ar 6= 0 and there exist i, j ∈ [n] such that i 6= j and ri = rj = 0.
Let I = {i, j}. The canonical polynomial of fI contains the monomial M (with
some reindexing of variables, if necessary); hence fI is not affine.

Assume then that all monomials in Pnon have at least n − 1 variables. If there
is a variable xi with i ∈ [n] that does not occur in any of the monomials of Pnon,
then let I = {i, j} for any j ∈ [n] \ {i}. The canonical polynomial of fI contains
all monomials of Pnon (with some reindexing of variables, if necessary); hence fI is
not affine.

We are left with the case that all monomials in Pnon have at least n−1 variables
and all variables xi, i ∈ [n], occur in Pnon. Identification of a pair of variables in
Pnon results in a polynomial in which all monomials have at least n − 2 variables;
some monomials may cancel each other, so the resulting polynomial may be 0.
Since fnon depends on all of its n arguments and n > max(q, 3), it follows from
Lemma 4.1 that there exists I ∈

(
n
2

)
such that (fnon)I depends on at least n − 2

arguments; hence the canonical polynomial of (fnon)I cannot be 0, so it contains a
monomial with at least n− 2 variables. Consequently, the canonical polynomial of
fI has a monomial with at least n− 2 variables; hence fI is not affine. �

Theorem 4.7. Let (G; +, ·) be a finite field of order q = pk. The affine functions
of arity at least max(q, 3) + 1 over (G; +, ·) are reconstructible.

Proof. Let C be the class of affine functions of arity at least max(q, 3) + 1 over
(G; +, ·). Since the identification minors of affine functions are affine, Lemma 4.6
implies that C is recognizable. By Theorem 4.5, C is weakly reconstructible. Con-
sequently, C is reconstructible. �

Remark 4.8. The lower bound max(q, 3)+1 in Theorem 4.7 cannot be improved. As
explained in [7], no function f : An → B with n ≤ |A| is reconstructible. It is also
necessary to assume that the arity is greater than 3. Since (G; +) is a group, additive
inverses exist for all elements, and for all a, b ∈ G, the multisets 〈a, b,−(a+ b)〉 and
〈−a,−b, a + b〉 have the same deck (see Example 3.3); thus the affine functions
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induced by the polynomials ax1 + bx2 − (a+ b)x3 and −ax1 − bx2 + (a+ b)x3 have
the same deck.

Furthermore, if (G; +, ·) is the two-element field, then (G; +) is a Boolean group,
and the multisets 〈1, 1, 1〉 and 〈1, 0, 0〉 have the same deck (see Example 3.2). Thus
the ternary functions induced by the polynomials x1 + x2 + x3 and x1 have the
same deck, because all identification minors of these functions are projections, and
any two projections are equivalent. The class of affine functions of arity 3 on the
2-element field is not even recognizable. Namely, all identification minors of the
function induced by the polynomial x1x2 + x1x3 + x2x3 are projections, too.

Remark 4.9. As explained in [7], if A is infinite, then no function f : An → B
is reconstructible. Even the class of polynomial functions over an infinite field
F fails to be weakly reconstructible. For n ≥ 2, define the polynomial function
∆n : Fn → F ,

∆n(x1, . . . , xn) =
∏

1≤i<j≤n

(xi − xj).

We have that (∆n)I(x1, . . . , xn−1) = 0 for every I ∈
(
n
2

)
. Consequently, for any

function f : Fn → F (polynomial or not), it holds that fI = (f + ∆n)I for every
I ∈

(
n
2

)
and deck f = deck(f + ∆n).
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