11 research outputs found

    Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease

    Get PDF
    Gluten proteins from wheat can induce celiac disease (CD) in genetically susceptible individuals. Specific gluten peptides can be presented by antigen presenting cells to gluten-sensitive T-cell lymphocytes leading to CD. During the last decades, a significant increase has been observed in the prevalence of CD. This may partly be attributed to an increase in awareness and to improved diagnostic techniques, but increased wheat and gluten consumption is also considered a major cause. To analyze whether wheat breeding contributed to the increase of the prevalence of CD, we have compared the genetic diversity of gluten proteins for the presence of two CD epitopes (Glia-α9 and Glia-α20) in 36 modern European wheat varieties and in 50 landraces representing the wheat varieties grown up to around a century ago. Glia-α9 is a major (immunodominant) epitope that is recognized by the majority of CD patients. The minor Glia-α20 was included as a technical reference. Overall, the presence of the Glia-α9 epitope was higher in the modern varieties, whereas the presence of the Glia-α20 epitope was lower, as compared to the landraces. This suggests that modern wheat breeding practices may have led to an increased exposure to CD epitopes. On the other hand, some modern varieties and landraces have been identified that have relatively low contents of both epitopes. Such selected lines may serve as a start to breed wheat for the introduction of ‘low CD toxic’ as a new breeding trait. Large-scale culture and consumption of such varieties would considerably aid in decreasing the prevalence of CD

    Toward the Assessment of Food Toxicity for Celiac Patients: Characterization of Monoclonal Antibodies to a Main Immunogenic Gluten Peptide

    Get PDF
    13 pages, 8 figures.-- PMID: 18509534 [PubMed].-- PMCID: PMC2386552.[Background and Aims] Celiac disease is a permanent intolerance to gluten prolamins from wheat, barley, rye and, in some patients, oats. Partially digested gluten peptides produced in the digestive tract cause inflammation of the small intestine. High throughput, immune-based assays using monoclonal antibodies specific for these immunotoxic peptides would facilitate their detection in food and enable monitoring of their enzymatic detoxification. Two monoclonal antibodies, G12 and A1, were developed against a highly immunotoxic 33-mer peptide. The potential of each antibody for quantifying food toxicity for celiac patients was studied.[Methods] Epitope preferences of G12 and A1 antibodies were determined by ELISA with gluten-derived peptide variants of recombinant, synthetic or enzymatic origin.[Results] The recognition sequences of G12 and A1 antibodies were hexameric and heptameric epitopes, respectively. Although G12 affinity for the 33-mer was superior to A1, the sensitivity for gluten detection was higher for A1. This observation correlated to the higher number of A1 epitopes found in prolamins than G12 epitopes. Activation of T cell from gluten digested by glutenases decreased equivalently to the detection of intact peptides by A1 antibody. Peptide recognition of A1 included gliadin peptides involved in the both the adaptive and innate immunological response in celiac disease.[Conclusions] The sensitivity and epitope preferences of the A1 antibody resulted to be useful to detect gluten relevant peptides to infer the potential toxicity of food for celiac patients as well as to monitor peptide modifications by transglutaminase 2 or glutenases.This work was supported by the Asociación de Celiacos de Madrid (to Carolina Sousa), by the CTA (Corporación Tecnológica de Andalucía) and IDEA (Agencia de Innovación y Desarrollo de Andalucía) (to Angel Cebolla) and by grants BFU2007-64999 from Plan Nacional de Investigación científica, Desarrollo e Innovación tecnológica (Miniterio de Educación y Ciencia) and RICET-RD06/0021-0014, Spain (to Manuel C. López). Belén Morón was supported by a fellowship from Consejo Andaluz de Colegios Oficiales de Farmacéuticos.Peer reviewe

    The levels of soluble granzyme A and B are elevated in plasma and synovial fluid of patients with rheumatoid arthritis (RA)

    No full text
    Cytotoxic cells possess specialized granules which contain perforin and a group of serine proteinases termed granzymes. Granzyme-positive cells have been identified in synovial fluid and tissue of patients with RA, where they may play an important role as mediators of granule-mediated apoptosis, extracellular proteolysis, and cytokine induction. The aim here was to define further the involvement of cytotoxic cells in RA. Plasma and synovial fluid samples from the knee joint were obtained from 31 RA patients. The disease controls included 20 osteoarthritis (OA) patients and 10 reactive arthritis (ReA) patients. A recently developed capture ELISA was used to detect soluble granzymes A and B in all patients. Compared with OA and ReA disease controls, markedly increased levels of soluble granzymes A and B were detected in both plasma and synovial fluid of RA patients (P < 0.00001). When values for soluble granzymes A and B in plasma and synovial fluid were used simultaneously as independent variables, logistic regression analysis indicated that a diagnosis of RA could be predicted correctly in 84% of the RA patients and a diagnosis of non-RA in 90% of the controls. The markedly elevated levels of soluble granzymes A and B in plasma and synovial fluid of RA patients strongly suggest that cytotoxic cells are active participants in the pathogenesis of RA. Moreover, the results suggest that measurement of granzymes may assist the laboratory evaluation of patients with arthritis. Larger studies in patients with early disease may clarify the role of this test system in differential diagnosis

    Increase in granzyme B(+) lymphocytes and soluble granzyme B in bronchoalveolar lavage of allergen challenged patients with atopic asthma

    No full text
    Asthma has been linked to a chronic, T-cell-mediated bronchial inflammation. Because other T-lymphocyte-mediated, chronic inflammatory disorders have been associated with elevated granzyme B (grB) expression we tested the hypothesis that atopic asthma might be associated with elevated grB levels in the bronchoalveolar compartment. Therefore we performed intracellular grB staining in lymphocytes from bronchoalveolar lavage (BAL) collected 42 h after segmental allergen provocation (SAP) in allergic patients with bronchial asthma. There was a significant increase in CD3(+), CD8(+), and CD16/56(+) lymphocytes expressing grB in BAL 42 h after SAP as compared to saline challenged controls. However, compared to peripheral blood the percentages of these lymphocyte subsets detected as grB(+) in BAL remained significantly lower. Measurement of extracellular grB in BAL fluids by a particle immunoassay revealed significantly elevated grB levels in the allergen challenged bronchoalveolar compartment 42 h following SAP in six of the eight patients (range, <1·0–348·1 pg/ml) as compared to saline challenged controls (range, <1·0–70·5 pg/ml). We conclude that total cell numbers of grB(+) lymphocyte subsets increase 42 h after SAP in the lower respiratory tract. In addition there is evidence to suggest that grB is released into the airways of asthmatic patients. This suggests a role for grB in the pathophysiological processes following SAP but its definitive role in allergic bronchial asthma needs to be established
    corecore