312 research outputs found

    Cardiac fibrosis can be attenuated by blocking the activity of transglutaminase 2 using a selective small-molecule inhibitor

    Get PDF
    Cardiac fibrosis is implicit in all forms of heart disease but there are no effective treatments. In this report, we investigate the role of the multi-functional enzyme Transglutaminase 2 (TG2) in cardiac fibrosis and assess its potential as a therapeutic target. Here we describe the use a highly selective TG2 small-molecule inhibitor to test the efficacy of TG2 inhibition as an anti-fibrotic therapy for heart failure employing two different in vivo models of cardiac fibrosis: Progressively induced interstitial cardiac fibrosis by pressure overload using angiotensin II infusion: Acutely induced focal cardiac fibrosis through myocardial infarction by ligation of the left anterior descending coronary artery (AMI model). In the AMI model, in vivo MRI showed that the TG2 inhibitor 1–155 significantly reduced infarct size by over 50% and reduced post-infarct remodelling at 20 days post insult. In both models, Sirius red staining for collagen deposition and levels of the TG2-mediated protein crosslink ε(γ-glutamyl)lysine were significantly reduced. No cardiac rupture or obvious signs of toxicity were observed. To provide a molecular mechanism for TG2 involvement in cardiac fibrosis, we show that both TGFβ1-induced transition of cardiofibroblasts into myofibroblast-like cells and TGFβ1- induced EndMT, together with matrix deposition, can be attenuated by the TG2 selective inhibitor 1–155, suggesting a new role for TG2 in regulating TGFβ1 signalling in addition to its role in latent TGFβ1 activation. In conclusion, TG2 has a role in cardiac fibrosis through activation of myofibroblasts and matrix deposition. TG2 inhibition using a selective small-molecule inhibitor can attenuate cardiac fibrosis

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    Blood pressure, body mass index and risk of cardiovascular disease in Chinese men and women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is still uncertain whether increased blood pressure (BP) has a stronger effect on the risk of cardiovascular disease (CVD) in lean persons than in obese persons. We tested it using a data set collected from a large cohort of Chinese adults.</p> <p>Methods</p> <p>Systolic and diastolic BP, body mass index (BMI) and other variables were measured in 169,871 Chinese men and women ≥ 40 years of age in 1991 using standard protocols. Follow-up evaluation was conducted in 1999-2000, with a response rate of 93.4%. Data were analyzed with Cox proportional hazards models.</p> <p>Results</p> <p>After adjusted for age, sex, cigarette smoking, alcohol consumption, high school education, physical inactivity, geographic region, and urbanization, we found that the effects of systolic or diastolic BP on risk of CVD generally increased with the increasing BMI levels (underweight, normal, overweight, and obese). For example, hazard ratios (HRs) and 95% confidence interval (CI) per 1- standard deviation (SD) increase in systolic BP within corresponding BMI levels were 1.27(1.21-1.33), 1.45(1.41-1.48), 1.52 (1.45-1.59) and 1.63 (1.51-1.76), respectively. Statistically significant interactions (P < 0.0001) were observed between systolic BP, diastolic BP and BMI in relation to CVD. In baseline hypertensive participants we found both obese men and women had higher risk of CVD than normal-weight persons. The multivariate-adjusted HRs(95%CI) were 1.23(1.03-1.47) and 1.20(1.02-1.40), respectively.</p> <p>Conclusion</p> <p>Our study suggests that the magnitude of the association between BP and CVD generally increase with increasing BMI. Hypertension should not be regarded as a less serious risk factor in obese than in lean or normal-weight persons in Chinese adults.</p

    Catching element formation in the act

    Get PDF
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions
    corecore