304 research outputs found

    Multivariate characterization of hydrogen Balmer emission in cataclysmic variables

    Get PDF
    The ratios of hydrogen Balmer emission line intensities in cataclysmic variables are signatures of the physical processes that produce them. To quantify those signatures relative to classifications of cataclysmic variable types, we applied the multivariate statistical analysis methods of principal components analysis and discriminant function analysis to the spectroscopic emission data set of Williams (1983). The two analysis methods reveal two different sources of variation in the ratios of the emission lines. The source of variation seen in the principal components analysis was shown to be correlated with the binary orbital period. The source of variation seen in the discriminant function analysis was shown to be correlated with the equivalent width of the HÎČ\beta line. Comparison of the data scatterplot with scatterplots of theoretical models shows that Balmer line emission from T CrB systems is consistent with the photoionization of a surrounding nebula. Otherwise, models that we considered do not reproduce the wide range of Balmer decrements, including "inverted" decrements, seen in the data.Comment: Accepted by PAS

    Variability in GRBs - A Clue

    Full text link
    We show that external shocks cannot produce a variable GRB, unless they are produced by an extremely narrow jets (angular opening of < ~10^{-4}) or if only a small fraction of the shell emits the radiation and the process is very inefficient. Internal shocks can produce the observed complex temporal structure provided that the source itself is variable. In this case, the observed temporal structure reflects the activity of the ``inner engine'' that drives the bursts. This sets direct constraints on it.Comment: 15 page latex file with 5 PS figure. Complete uuencoded compressed PS file is available at ftp://shemesh.fiz.huji.ac.il or at http://shemesh.fiz.huji.ac.il/papers/SaP_aclue.u

    The role of electron-screening deformations in solar nuclear fusion reactions and the solar neutrino puzzle

    Get PDF
    Thermonuclear fusion reaction rates in the solar plasma are enhanced by the presence of the electron cloud that screens fusing nuclei. The present work studies the influence of electron screening deformations on solar reaction rates in the framework of the Debye-Huckel model. These electron-ion cloud deformations, assumed here to be static and axially symmetric, are shown to be able to considerably influence the solar neutrino fluxes of the pp and the CNO chains, with reasonable changes in the macroscopic parameters of the standard solar model (SSM) . Various known deformation sources are discussed but none of them is found strong enough to have a significant impact on the SSM neutrino fluxes.Comment: Revised version (14 RevTeX pages, 3 ps figures). Accepted for publication in Nuclear Physics

    Observations and simulations of recurrent novae: U Sco and V394 CrA

    Get PDF
    Observations and analysis of the Aug. 1987 outburst of the recurrent nova V394 CrA are presented. This nova is extremely fast and its outburst characteristics closely resemble those of the recurrent nova U Sco. Hydrodynamic simulations of the outbursts of recurrent novae were performed. Results as applied to the outbursts of V394 CrA and U Sco are summarized

    Astrophysical factors:Zero energy vs. Most effective energy

    Get PDF
    Effective astrophysical factors for non-resonant astrophysical nuclear reaction are invariably calculated with respect to a zero energy limit. In the present work that limit is shown to be very disadvantageous compared to the more natural effective energy limit. The latter is used in order to modify the thermonuclear reaction rate formula so that it takes into account both plasma and laboratory screening effects.Comment: 7 RevTex pages. Accepted for publication in Phys.Rev.

    Thermophysical properties of the lanthanide sesquisulfides. III. Determination of Schottky and lattice heat‐capacity contributions of γ‐phase Sm2S3 and evaluation of the thermophysical properties of the γ‐phase Ln2S3 subset

    Full text link
    We report the experimental heat capacity of γ‐phase Sm2S3 and derived thermophysical properties at selected temperatures. The entropy, enthalpy increments, and Gibbs energy function are 21.50R, 3063R⋅K, and 11.23R at 298.15 K. The experimental heat capacity is made up of lattice and electronic (Schottky) contributions. The lattice contribution is determined for all γ‐phase lanthanide sesquisulfides (Ln2S3 ) using the Komada/Westrum model. The difference between the experimental heat capacity and the deduced lattice heat capacity is analyzed as the Schottky contribution. Comparisons are made between the calorimetric Schottky contributions and those determined based on crystal‐field electronic energy levels of Ln3+ ions in the lattice and between the Schottky contributions obtained from the empirical volumetric priority approach and from the Komada/Westrum theoretical approach. Predictions for the thermophysical properties of γ‐phase Eu2S3 and γ‐phase Pm2S3 (unavailable for experimental determination) are also presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71137/2/JCPSA6-96-8-6149-1.pd

    Flow instabilities of magnetic flux tubes IV. Flux storage in the solar overshoot region

    Full text link
    We consider the effects of material flows on the dynamics of toroidal magnetic flux tubes located close to the base of the solar convection zone, initially within the overshoot region. The problem is to find the physical conditions in which magnetic flux can be stored for periods comparable to the dynamo amplification time, which is of the order of a few years. We carry out nonlinear numerical simulations to investigate the stability and dynamics of thin flux tubes subject to perpendicular and longitudinal flows. We compare the simulations with the results of simplified analytical approximations. We determine ranges of the flow parameters for which a linearly Parker-stable magnetic flux tube is stored in the middle of the overshoot region for a period comparable to the dynamo amplification time. The residence time for magnetic flux tubes with fluxes of 2x10^{21} Mx in the convective overshoot layer is comparable to the dynamo amplification time, provided that the average speed and the duration of the downflow do not exceed about 50 m/s and 100 days, respectively, and that the lateral extension of the flow is smaller than about 10 degrees.Comment: Accepted to be published in Astronomy and Astrophysics. 16 pages, 16 figures. To access GIF animations, use http://www.mps.mpg.de/homes/ishik/flute/frict_inst.gif, http://www.mps.mpg.de/homes/ishik/flute/TF60.gif and http://www.mps.mpg.de/homes/ishik/flute/TF180.gi

    Non-linear screening corrections of stellar nuclear reaction rates and their effects on solar neutrino fluxes

    Get PDF
    Non-linear electron screening corrections of stellar nuclear fusion rates are calculated analytically in the framework of the Debye-Huckel model and compared with the respective ones of Salpeter's weak screening approximation. In typical solar conditions, the deviation from Salpeter's screening factor is less than one percent, while for hotter stars such corrections turn out to be of the order of one percent only over the limits of the Debye-Huckel model. Moreover, an investigation of the impact of the derived non-linear screening effects on the solar neutrino fluxes yields insignificant corrections for both the pp and CNO chain reactions.Comment: To appear in Phys.Rev.

    Physical parameters and emission mechanism in Gamma-Ray Bursts

    Full text link
    Detailed information on the physical parameters in the sources of cosmological Gamma-Ray Bursts (GRBs) is obtained from few plausible assumptions consistent with observations. Model-independent requirements posed by these assumptions on the emission mechanism in GRBs are formulated. It is found that the observed radiation in sub-MeV energy range is generated by the synchrotron emission mechanism, though about ten per cent of the total GRB energy should be converted via the inverse Compton process into ultra-hard spectral domain (above 100 GeV). We estimate the magnetic field strength in the emitting region, the Lorentz factor of accelerated electrons, and the typical energy of IC photons. We show that there is a "line-of-death" relation for GRBs and derive from this relation the lower limits on both GRB duration and GRB variability timescale. The upper limit on the Lorentz factor of GRB fireballs is also found. We demonstrate that steady-state electron distribution consistent with the Compton losses may produce different spectral indices, e.g., 3/4 as opposed to the figure 1/2 widely discussed in the literature. It is suggested that the changes in the decline rate observed in the lightcurves of several GRB afterglows may be due to the time evolution of spectral break, which appears in the synchrotron emission generated by steady-state self-consistent electron distribution.Comment: Journal reference added, introduction extended, minor changes in notation
    • 

    corecore