344 research outputs found

    UVR8-mediated inhibition of shade avoidance involves HFR1 stabilization in Arabidopsis.

    Get PDF
    Sun-loving plants perceive the proximity of potential light-competing neighboring plants as a reduction in the red:far-red ratio (R:FR), which elicits a suite of responses called the "shade avoidance syndrome" (SAS). Changes in R:FR are primarily perceived by phytochrome B (phyB), whereas UV-B perceived by UV RESISTANCE LOCUS 8 (UVR8) elicits opposing responses to provide a counterbalance to SAS, including reduced shade-induced hypocotyl and petiole elongation. Here we show at the genome-wide level that UVR8 broadly suppresses shade-induced gene expression. A subset of this gene regulation is dependent on the UVR8-stabilized atypical bHLH transcription regulator LONG HYPOCOTYL IN FAR-RED 1 (HFR1), which functions in part redundantly with PHYTOCHROME INTERACTING FACTOR 3-LIKE 1 (PIL1). In parallel, UVR8 signaling decreases protein levels of the key positive regulators of SAS, namely the bHLH transcription factors PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5, in a COP1-dependent but HFR1-independent manner. We propose that UV-B antagonizes SAS via two mechanisms: degradation of PIF4 and PIF5, and HFR1- and PIL1-mediated inhibition of PIF4 and PIF5 function. This work highlights the importance of typical and atypical bHLH transcription regulators for the integration of light signals from different photoreceptors and provides further mechanistic insight into the crosstalk of UVR8 signaling and SAS

    Experimental Study of the Inductance of Pinned Vortices in Superconducting YBa2Cu3O7-d Films

    Full text link
    Using a two-coil mutual inductance method, we have measured the complex resistivity, rho_v(T,Be), of pinned vortices in c-axis pulsed laser deposited YBa2Cu3O7-d films with magnetic field Be applied perpendicular to the film. At low frequencies, (<100 kHz), rho_v is inductive and is inversely proportional to the Labusch parameter, the average vortex pinning force constant, kappa_exp. The observed weakening of kappa_exp with Be is consistent with a simple model based on linear pinning defects. Adding classical thermal fluctuations to the model in a simple way describes the observed linear T dependence of rho_v, below ~15 K and provides reasonable values for the effective radius (.3 nm to >.8 nm) of the defects and the depth of the pinning potential. The success of this model implies that thermal supercurrent (phase) fluctuations have their full classical amplitude down to 5 K for frequencies below the characteristic depinning frequency. To date, no sufficient theory exists to explain the data between ~15 K and the vortex glass melting temperature.Comment: 31 pages, 8 figures. Subm. to PR

    Pair breaking by impurities in the two-dimensional t-J model

    Full text link
    Pair breaking mechanisms by impurities are investigated in the two-dimensional t-J model by exact diagonalization techniques. Analysis of binding energies, pairing correlations, dynamical spin and pair susceptibilities shows that non-magnetic impurities are more effective in suppressing pairing than magnetic ones in agreement with experimental studies of Zn- and Ni- substituted High-Tc superconductors.Comment: 4 pages, Revtex v3.0, 4 figures uuencoded, ask for hardcopies at [email protected] A missleading statement in the introduction was correcte

    Mesoscale texture of cement hydrates

    Get PDF
    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron- microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials

    Critical temperature and superfluid density suppression in disordered high-TcT_c cuprate superconductors

    Full text link
    We argue that the standard Abrikosov-Gorkov (AG) type theory of TcT_c in disordered dd-wave superconductors breaks down in short coherence length high-TcT_c cuprates. Numerical calculations within the Bogoliubov-de Gennes formalism demonstrate that the correct description of such systems must allow for the spatial variation of the order parameter, which is strongly suppressed in the vicinity of impurities but mostly unaffected elsewhere. Suppression of TcT_c as measured with respect to the attendant decrease in the superfluid density is found to be significantly weaker than that predicted by the AG theory, in good agreement with experiment.Comment: REVTeX, 4 pages, 3 ps figures included [The version to appear in PRB Sept. 1. Conclusions of the paper unchanged; several changes in text and figures for added clarity, discussion of phase fluctuations added.

    Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate

    Full text link
    When a system crosses a second-order phase transition on a finite timescale, spontaneous symmetry breaking can cause the development of domains with independent order parameters, which then grow and approach each other creating boundary defects. This is known as Kibble-Zurek mechanism. Originally introduced in cosmology, it applies both to classical and quantum phase transitions, in a wide variety of physical systems. Here we report on the spontaneous creation of solitons in Bose-Einstein condensates via the Kibble-Zurek mechanism. We measure the power-law dependence of defects number with the quench time, and provide a check of the Kibble-Zurek scaling with the sonic horizon. These results provide a promising test bed for the determination of critical exponents in Bose-Einstein condensates.Comment: 7 pages, 4 figure

    Coherent Potential Approximation for `d - wave' Superconductivity in Disordered Systems

    Get PDF
    A Coherent Potential Approximation is developed for s-wave and d-wave superconductivity in disordered systems. We show that the CPA formalism reproduces the standard pair-breaking formula, the self-consistent Born Approximation and the self-consistent T-matrix approximation in the appropriate limits. We implement the theory and compute T_c for s-wave and d-wave pairing using an attractive nearest neighbor Hubbard model featuring both binary alloy disorder and a uniform distribution of scattering site potentials. We determine the density of states and examine its consequences for low temperature heat capacity. We find that our results are in qualitative agreement with measurements on Zn doped YBCO superconductors.Comment: 35 pages, 23 figures, submitted to Phys Rev.
    corecore