13,986 research outputs found

    Online Local Learning via Semidefinite Programming

    Full text link
    In many online learning problems we are interested in predicting local information about some universe of items. For example, we may want to know whether two items are in the same cluster rather than computing an assignment of items to clusters; we may want to know which of two teams will win a game rather than computing a ranking of teams. Although finding the optimal clustering or ranking is typically intractable, it may be possible to predict the relationships between items as well as if you could solve the global optimization problem exactly. Formally, we consider an online learning problem in which a learner repeatedly guesses a pair of labels (l(x), l(y)) and receives an adversarial payoff depending on those labels. The learner's goal is to receive a payoff nearly as good as the best fixed labeling of the items. We show that a simple algorithm based on semidefinite programming can obtain asymptotically optimal regret in the case where the number of possible labels is O(1), resolving an open problem posed by Hazan, Kale, and Shalev-Schwartz. Our main technical contribution is a novel use and analysis of the log determinant regularizer, exploiting the observation that log det(A + I) upper bounds the entropy of any distribution with covariance matrix A.Comment: 10 page

    Test of quantum chemistry in vibrationally-hot hydrogen molecules

    Full text link
    Precision measurements are performed on highly excited vibrational quantum states of molecular hydrogen. The v=12,J=0−3v=12, J=0-3 rovibrational levels of H2_2 (X1Σg+X^1\Sigma_g^+), lying only 20002000 cm−1^{-1} below the first dissociation limit, were populated by photodissociation of H2_2S and their level energies were accurately determined by two-photon Doppler-free spectroscopy. A comparison between the experimental results on v=12v=12 level energies with the best \textit{ab initio} calculations shows good agreement, where the present experimental accuracy of 3.5×10−33.5 \times10^{-3} cm−1^{-1} is more precise than theory, hence providing a gateway to further test theoretical advances in this benchmark quantum system.Comment: 5 pages, 4 figures, and 2 table

    The detection and interpretation of long-term changes in ozone from space

    Get PDF
    Long-term measurements of backscattered ultraviolet radiances, now being acquired by orbiting monochromators, will provide the basis for seeking trends in atmospheric ozone. The unambiguous detection of ozone trends on decadal time scales demands a data set that is essentially free of instrument drifts. Periodic flights of an ultraviolet monochromator on the space shuttle will provide an independent means of evaluating the long-term stability of identical instruments operating on free-flying satellites. A successful calibration of the free-flying sensors using the shuttle instrument places strict demands on calibration repeatability from one flight to the next. In addition, spatial and temporal variability in cloud cover could pose further complications in carrying out these in-flight calibrations

    High-precision laser spectroscopy of the CO A1Π^1\Pi - X1Σ+^1\Sigma^+ (2,0), (3,0) and (4,0) bands

    Full text link
    High-precision two-photon Doppler-free frequency measurements have been performed on the CO A1Π^1\Pi - X1Σ+^1\Sigma^+ fourth-positive system (2,0), (3,0), and (4,0) bands. Absolute frequencies of forty-three transitions, for rotational quantum numbers up to J=5J = 5, have been determined at an accuracy of 1.6×10−31.6\times10^{-3} cm−1^{-1}, using advanced techniques of two-color 2+1' resonance-enhanced multi-photon ionization, Sagnac interferometry, frequency-chirp analysis on the laser pulses, and correction for AC-Stark shifts. The accurate transition frequencies of the CO A1Π^1\Pi - X1Σ+^1\Sigma^+ system are of relevance for comparison with astronomical data in the search for possible drifts of fundamental constants in the early universe. The present accuracies in laboratory wavelengths of Δλ/λ=2×10−8\Delta\lambda/\lambda = 2 \times 10^{-8} may be considered exact for the purpose of such comparisons.Comment: 13 pages, 6 figures, The Journal of Chemical Physics (2015) accepte

    Unbalanced edge modes and topological phase transition in gated trilayer graphene

    Full text link
    Gapless edge modes hosted by chirally-stacked trilayer graphene display unique features when a bulk gap is opened by applying an interlayer potential difference. We show that trilayer graphene with half-integer valley Hall conductivity leads to unbalanced edge modes at opposite zigzag boundaries, resulting in a natural valley current polarizer. This unusual characteristic is preserved in the presence of Rashba spin-orbit coupling that turns a gated trilayer graphene into a Z2{Z}_2 topological insulator with an odd number of helical edge mode pairs.Comment: 5 pages, 4 figure

    Quasi-particle random phase approximation with quasi-particle-vibration coupling: application to the Gamow-Teller response of the superfluid nucleus 120^{120}Sn

    Get PDF
    We propose a self-consistent quasi-particle random phase approximation (QRPA) plus quasi-particle-vibration coupling (QPVC) model with Skyrme interactions to describe the width and the line shape of giant resonances in open-shell nuclei, in which the effect of superfluidity should be taken into account in both the ground state and the excited states. We apply the new model to the Gamow-Teller resonance in the superfluid nucleus 120^{120}Sn, including both the isoscalar spin-triplet and the isovector spin-singlet pairing interactions. The strength distribution in 120^{120}Sn is well reproduced and the underlying microscopic mechanisms, related to QPVC and also to isoscalar pairing, are analyzed in detail.Comment: 32 pages, 11 figures, 4 table

    Critical Phenomena and Thermodynamic Geometry of RN-AdS Black Holes

    Full text link
    The phase transition of Reissner-Nordstr\"om black holes in (n+1)(n+1)-dimensional anti-de Sitter spacetime is studied in details using the thermodynamic analogy between a RN-AdS black hole and a van der Waals liquid gas system. We first investigate critical phenomena of the RN-AdS black hole. The critical exponents of relevant thermodynamical quantities are evaluated. We find identical exponents for a RN-AdS black hole and a Van der Waals liquid gas system. This suggests a possible universality in the phase transitions of these systems. We finally study the thermodynamic behavior using the equilibrium thermodynamic state space geometry and find that the scalar curvature diverges exactly at the van der Waals-like critical point where the heat capacity at constant charge of the black hole diverges.Comment: 18 pages, 5 figure

    Valley Dependent Optoelectronics from Inversion Symmetry Breaking

    Full text link
    Inversion symmetry breaking allows contrasted circular dichroism in different k-space regions, which takes the extreme form of optical selection rules for interband transitions at high symmetry points. In materials where band-edges occur at noncentral valleys, this enables valley dependent interplay of electrons with light of different circular polarizations, in analogy to spin dependent optical activities in semiconductors. This discovery is in perfect harmony with the previous finding of valley contrasted Bloch band features of orbital magnetic moment and Berry curvatures from inversion symmetry breaking [Phys. Rev. Lett. 99, 236809 (2007)]. A universal connection is revealed between the k-resolved optical oscillator strength of interband transitions, the orbital magnetic moment and the Berry curvatures, which also provides a principle for optical measurement of orbital magnetization and intrinsic anomalous Hall conductivity in ferromagnetic systems. The general physics is demonstrated in graphene where inversion symmetry breaking leads to valley contrasted optical selection rule for interband transitions. We discuss graphene based valley optoelectronics applications where light polarization information can be interconverted with electronic information.Comment: Expanded version, to appear in Phys. Rev.

    Coordinate shift in the semiclassical Boltzmann equation and the anomalous Hall effect

    Full text link
    We propose a gauge invariant expression for the side jump associated with scattering between particular Bloch states. Our expression for the side jump follows from the Born series expansion for the scattering T-matrix in powers of the strength of the scattering potential. Given our gauge invariant side jump expression, it is possible to construct a semiclassical Boltzmann theory of the anomalous Hall effect which expresses all previously identified contributions in terms of gauge invariant quantities and does not refer explicitly to off-diagonal terms in the density-matrix response.Comment: 6 pages, 1 fugure. submitted to PR
    • …
    corecore