279 research outputs found

    Productivity, Wages and Marriage: The Case of Major League Baseball

    Get PDF
    The effect of marriage on productivity and, consequently, wages has been long debated in economics. A primary explanation for the impact of marriage on wages has been through its impact on productivity, however, there has been no direct evidence for this. In this paper, we aim to fill this gap by directly measuring the impact of marriage on productivity using a sample of professional baseball players from 1871 - 2007. Our results show that only lower ability men see an increase in productivity, though this result is sensitive to the empirical specification and weakly significant. In addition, despite the lack of any effect on productivity, high ability married players earn roughly 16 - 20 percent more than their single counterparts. We discuss possible reasons why employers may favor married men.Productivity, wage gap, marriage, and baseball

    Dynamical magnetic anisotropy and quantum phase transitions in a vibrating spin-1 molecular junction

    Full text link
    We study the electronic transport through a spin-1 molecule in which mechanical stretching produces a magnetic anisotropy. In this type of device, a vibron mode along the stretching axis will couple naturally to the molecular spin. We consider a single molecular vibrational mode and find that the electron-vibron interaction induces an effective correction to the magnetic anisotropy that shifts the ground state of the device toward a non-Fermi liquid phase. A transition into a Fermi liquid phase could then be achieved, by means of mechanical stretching, passing through an underscreened spin-1 Kondo regime. We present numerical renormalization group results for the differential conductance, the spectral density, and the magnetic susceptibility across the transition.Comment: 7 pages, 7 figure

    Protein kinase C isoenzymes in human neuroblasts involvement of PKCĪµ in cell differentiation

    Get PDF
    AbstractAlthough neuronal cells are a major target of phorbol ester action, the activity of the various protein kinase C (PKC) isoenzymes have not been studied in detail in human neuroblasts. Differentiation of the LAN-5 human neuroblastoma cell line by interferon-Ī³ (IFN-Ī³) is accompanied by a twofold increase in PKC activity. Since PKC is a multigene family, we investigated which isoforms were expressed in control and differentiated cells, and which of these isoenzymes is involved in neuronal differentiation. We found that: (1) PKC activity is higher in differentiated than in undifferentiated cells; (2) RT-PCR analysis showed the expression of mRNA for PKCĪ±, -Ī³, -Ī“ -Īµ and-Ī¶ and the absence of mRNA for Ī² in untreated LAN-5 cells; (3) Western blot evaluation with PKC isoform-specific antibodies showed the same pattern of PKC expression in non-differentiated cells; (4) Expression of PKCĪµ mRNA was significantly enhanced by IFN-Ī³-induced differentiation, while the other isoforms were not affected; (5) Differentiation of LAN-5 cells with IFN-Ī³ or retinoic acid induced overexpression of the PKCĪµ protein, while inhibition of cell proliferation by fetal calf serum starvation was without effect. These findings suggest that expression of PKCĪµ isoform is tightly coupled with neuronal differentiation and may play a role in the maintenance of the differentiated state

    Kondo Regime of a Quantum Dot Molecule: A Finite-U Slave-Boson Approach

    Full text link
    We study the electronic transport in a double quantum dot structure connected to leads in the Kondo regime for both series and parallel arrangements. By applying a finite-U slave boson technique in the mean field approximation we explore the effect of level degeneracy in the conductance through the system. Our results show that for the series connection, as the energy difference of the localized dot levels increases, the tunneling via the Kondo state is destroyed. For the parallel configuration, we find an interesting interplay of state symmetry and conductance. Our results are in good agrement with those obtained with other methods, and provide additional insights into the physics of the Kondo state in the double dot system.Comment: 4 pages, 5 figures, to appear in Physica

    What predicts a successful life? A life-course model of well-being

    Get PDF
    Policy makers who care about wellā€being need a recursive model of how adult lifeā€satisfaction is predicted by childhood influences, acting both directly and (indirectly) through adult circumstances. We estimate such a model using the British Cohort Study (1970). We show that the most powerful childhood predictor of adult lifeā€satisfaction is the child's emotional health, followed by the child's conduct. The least powerful predictor is the child's intellectual development. This may have implications for educational policy. Among adult circumstances, family income accounts for only 0.5% of the variance of lifeā€satisfaction. Mental and physical health are much more important

    Transmission in double quantum dots in the Kondo regime: Quantum-critical transitions and interference effects

    Full text link
    We study the transmission through a double quantum-dot system in the Kondo regime. An exact expression for the transmission coefficient in terms of fully interacting many-body Green's functions is obtained. By mapping the system into an effective Anderson impurity model, one can determine the transmission using numerical renormalization-group methods. The transmission exhibits signatures of the different Kondo regimes of the effective model, including an unusual Kondo phase with split peaks in the spectral function, as well as a pseudogapped regime exhibiting a quantum critical transition between Kondo and unscreened phases.Comment: 4 pages, 3 figures; Submitted to Physica E (EP2DS-17 proceedings, oral presentation), updated Ref

    Quasiparticles and c-axis coherent hopping in high T_c superconductors

    Full text link
    We study the problem of the low-energy quasiparticle spectrum of the extended t-J model and analyze the coherent hopping between weakly coupled planes described by this model. Starting with a two-band model describing the Cu-O planes and the unoccupied bands associated to the metallic atoms located in between the planes, we obtain effective hopping matrix elements describing the c-axis charge transfer. A computational study of these processes shows an anomalously large charge anisotropy for doping concentrations around and below the optimal doping.Comment: 4 pages, 3 figure

    Freezing transition of the vortex liquid in anisotropic superconductors

    Full text link
    We study the solid-liquid transition of a model of pancake vortices in laminar superconductors using a density functional theory of freezing. The physical properties of the system along the melting line are discussed in detail. We show that there is a very good agreement with experimental data in the shape and position of the first order transition in the phase diagram and in the magnitude and temperature dependence of the magnetic induction jump at the transition. We analyze the validity of the Lindemann melting criterion and the Hansen-Verlet freezing criterion. Both criteria are shown to be good to predict the phase diagram in the region where a first order phase transition is experimentally observed.Comment: 9 pages, 10 figure

    First order Mott transition at zero temperature in two dimensions: Variational plaquette study

    Full text link
    The nature of the metal-insulator Mott transition at zero temperature has been discussed for a number of years. Whether it occurs through a quantum critical point or through a first order transition is expected to profoundly influence the nature of the finite temperature phase diagram. In this paper, we study the zero temperature Mott transition in the two-dimensional Hubbard model on the square lattice with the variational cluster approximation. This takes into account the influence of antiferromagnetic short-range correlations. By contrast to single-site dynamical mean-field theory, the transition turns out to be first order even at zero temperature.Comment: 6 pages, 5 figures, version 2 with additional results for 8 bath site

    Mechanical Control of Spin States in Spin-1 Molecules and the Underscreened Kondo Effect

    Get PDF
    The ability to make electrical contact to single molecules creates opportunities to examine fundamental processes governing electron flow on the smallest possible length scales. We report experiments in which we controllably stretch individual cobalt complexes having spin S = 1, while simultaneously measuring current flow through the molecule. The molecule's spin states and magnetic anisotropy were manipulated in the absence of a magnetic field by modification of the molecular symmetry. This control enabled quantitative studies of the underscreened Kondo effect, in which conduction electrons only partially compensate the molecular spin. Our findings demonstrate a mechanism of spin control in single-molecule devices and establish that they can serve as model systems for making precision tests of correlated-electron theories.Comment: main text: 5 pages, 4 figures; supporting information attached; to appear in Science
    • ā€¦
    corecore