6,641 research outputs found
On the equivalence of two deformation schemes in quantum field theory
Two recent deformation schemes for quantum field theories on the
two-dimensional Minkowski space, making use of deformed field operators and
Longo-Witten endomorphisms, respectively, are shown to be equivalent.Comment: 14 pages, no figure. The final version is available under Open
Access. CC-B
Deformations of Fermionic Quantum Field Theories and Integrable Models
Considering the model of a scalar massive Fermion, it is shown that by means
of deformation techniques it is possible to obtain all integrable quantum field
theoretic models on two-dimensional Minkowski space which have factorizing
S-matrices corresponding to two-particle scattering functions S_2 satisfying
S_2(0) = -1. Among these models there is for example the Sinh-Gordon model. Our
analysis provides a complement to recent developments regarding deformations of
quantum field theories. The deformed model is investigated also in higher
dimensions. In particular, locality and covariance properties are analyzed.Comment: 20 page
Wedge-Local Quantum Fields and Noncommutative Minkowski Space
Within the setting of a recently proposed model of quantum fields on
noncommutative Minkowski spacetime, the consequences of the consistent
application of the proper, untwisted Poincare group as the symmetry group are
investigated. The emergent model contains an infinite family of fields which
are labelled by different noncommutativity parameters, and related to each
other by Lorentz transformations. The relative localization properties of these
fields are investigated, and it is shown that to each field one can assign a
wedge-shaped localization region of Minkowski space. This assignment is
consistent with the principles of covariance and locality, i.e. fields
localized in spacelike separated wedges commute.
Regarding the model as a non-local, but wedge-local, quantum field theory on
ordinary (commutative) Minkowski spacetime, it is possible to determine
two-particle S-matrix elements, which turn out to be non-trivial. Some partial
negative results concerning the existence of observables with sharper
localization properties are also obtained.Comment: Version to appear in JHEP, 27 page
Deformations of quantum field theories on de Sitter spacetime
Quantum field theories on de Sitter spacetime with global U(1) gauge symmetry
are deformed using the joint action of the internal symmetry group and a
one-parameter group of boosts. The resulting theory turns out to be wedge-local
and non-isomorphic to the initial one for a class of theories, including the
free charged Dirac field. The properties of deformed models coming from
inclusions of CAR-algebras are studied in detail.Comment: 26 pages, no figure
Silicon rich oxide with controlled mean size of silicon nanocrystals by deposition in multilayers
Scaling limits of integrable quantum field theories
Short distance scaling limits of a class of integrable models on
two-dimensional Minkowski space are considered in the algebraic framework of
quantum field theory. Making use of the wedge-local quantum fields generating
these models, it is shown that massless scaling limit theories exist, and
decompose into (twisted) tensor products of chiral, translation-dilation
covariant field theories. On the subspace which is generated from the vacuum by
the observables localized in finite light ray intervals, this symmetry can be
extended to the M\"obius group. The structure of the interval-localized
algebras in the chiral models is discussed in two explicit examples.Comment: Revised version: erased typos, improved formulations, and corrections
of Lemma 4.8/Prop. 4.9. As published in RMP. 43 pages, 1 figur
Erythrocytes in multiple sclerosis: forgotten contributors to the pathophysiology?
Multiple sclerosis (MS) is an autoimmune disease characterised by lymphocytic infiltration of the central nervous system and subsequent destruction of myelin and axons. On the background of a genetic predisposition to autoimmunity, environmental triggers are assumed to initiate the disease. The majority of MS research has focused on the pathological involvement of lymphocytes and other immune cells, yet a paucity of attention has been given to erythrocytes, which may play an important role in MS pathology. The following review briefly summarises how erythrocytes may contribute to MS pathology through impaired antioxidant capacity and altered haemorheological features. The effect of disease-modifying therapies on erythrocytes is also reviewed. It may be important to further investigate erythrocytes in MS, as this could broaden the understanding of the pathological mechanisms of the disease, as well as potentially lead to the discovery of novel and innovative targets for future therapies
Spin precession and alternating spin polarization in spin-3/2 hole systems
The spin density matrix for spin-3/2 hole systems can be decomposed into a
sequence of multipoles which has important higher-order contributions beyond
the ones known for electron systems [R. Winkler, Phys. Rev. B \textbf{70},
125301 (2004)]. We show here that the hole spin polarization and the
higher-order multipoles can precess due to the spin-orbit coupling in the
valence band, yet in the absence of external or effective magnetic fields. Hole
spin precession is important in the context of spin relaxation and offers the
possibility of new device applications. We discuss this precession in the
context of recent experiments and suggest a related experimental setup in which
hole spin precession gives rise to an alternating spin polarization.Comment: 4 pages, 2 figures, to appear in Physical Review Letter
Optical Spectroscopy of IRAS 02091+6333
We present a detailed spectroscopic investigation, spanning four winters, of
the asymptotic giant branch (AGB) star IRAS 02091+6333. Zijlstra & Weinberger
(2002) found a giant wall of dust around this star and modelled this unique
phenomenon. However their work suffered from the quality of the optical
investigations of the central object. Our spectroscopic investigation allowed
us to define the spectral type and the interstellar foreground extinction more
precisely. Accurate multi band photometry was carried out. This provides us
with the possibility to derive the physical parameters of the system. The
measurements presented here suggest a weak irregular photometric variability of
the target, while there is no evidence of a spectroscopic variability over the
last four years.Comment: 5 pages, Latex, 3 tables, 4 figures, Astron. & Astrophys. - in pres
- …
