1,692 research outputs found
Heralded magnetism in non-Hermitian atomic systems
Quantum phase transitions are usually studied in terms of Hermitian
Hamiltonians. However, cold-atom experiments are intrinsically non-Hermitian
due to spontaneous decay. Here, we show that non-Hermitian systems exhibit
quantum phase transitions that are beyond the paradigm of Hermitian physics. We
consider the non-Hermitian XY model, which can be implemented using three-level
atoms with spontaneous decay. We exactly solve the model in one dimension and
show that there is a quantum phase transition from short-range order to
quasi-long-range order despite the absence of a continuous symmetry in the
Hamiltonian. The ordered phase has a frustrated spin pattern. The critical
exponent can be 1 or 1/2. Our results can be seen experimentally with
trapped ions, cavity QED, and atoms in optical lattices.Comment: 7 pages + appendi
Entanglement tongue and quantum synchronization of disordered oscillators
We study the synchronization of dissipatively-coupled van der Pol oscillators
in the quantum limit, when each oscillator is near its quantum ground state.
Two quantum oscillators with different frequencies exhibit an entanglement
tongue, which is the quantum analogue of an Arnold tongue. It means that the
oscillators are entangled in steady state when the coupling strength is greater
than a critical value, and the critical coupling increases with detuning. An
ensemble of many oscillators with random frequencies still exhibits a
synchronization phase transition in the quantum limit, and we analytically
calculate how the critical coupling depends on the frequency disorder. Our
results can be experimentally observed with trapped ions or neutral atoms.Comment: 11 pages, 5 figure
Will mobile video become the killer application for 3G? - an empirical model for media convergence
Mobile carriers have continually rolled out 3G mobile video applications to increase their revenue and profits. The presumption is that video is superior to the already successful SMS, ringtones, and pictures, and can create greater value to users. However, recent market surveys revealed contradicting results. Motivated by this discrepancy, we propose in this paper a parsimonious model for user acceptance of mobile entertainment as digital convergence. Integrating research on Information Systems, Flow, and Media Psychology, we take a unique approach to user acceptance of digital convergence - platform migration. Our key proposition is that the interaction between media types and the platform-specific constraints is the key determinant of user evaluation. Particularly, users' involvement in the media is determined by both the entertaining time span on the original platform and the attentional constraint of the new platform. The mismatch between the two spans can result in lower level involvement, which in turn cause no or even negative user emotional responses. The model was tested with empirical data. We discuss the theoretical contributions, strategic and design implications, and future research directions derived from this theoretical framewor
Perturbative Wilson loops from unquenched Monte Carlo simulations at weak couplings
Perturbative expansions of several small Wilson loops are computed through
next-to-next-to-leading order in unquenched lattice QCD, from Monte Carlo
simulations at weak couplings. This approach provides a much simpler
alternative to conventional diagrammatic perturbation theory, and is applied
here for the first time to full QCD. Two different sets of lattice actions are
considered: one set uses the unimproved plaquette gluon action together with
the unimproved staggered-quark action; the other set uses the one-loop-improved
Symanzik gauge-field action together with the so-called ``asqtad''
improved-staggered quark action. Simulations are also done with different
numbers of dynamical fermions. An extensive study of the systematic
uncertainties is presented, which demonstrates that the small third-order
perturbative component of the observables can be reliably extracted from
simulation data. We also investigate the use of the rational hybrid Monte Carlo
algorithm for unquenched simulations with unimproved-staggered fermions. Our
results are in excellent agreement with diagrammatic perturbation theory, and
provide an important cross-check of the perturbation theory input to a recent
determination of the strong coupling by the HPQCD
collaboration.Comment: 14 pages, 8 figure
Studies on electrostatic interactions of colloidal particles under two-dimensional confinement
We study the effective electrostatic interactions between a pair of charged
colloidal particles without salt ions while the system is confined in two
dimensions. In particular we use a simplified model to elucidate the effects of
rotational fluctuations in counterion distribution. The results exhibit
effective colloidal attractions under appropriate conditions. Meanwhile,
long-range repulsions persist over most of our studied cases. The repulsive
forces arise from the fact that in two dimensions the charged colloids cannot
be perfectly screened by counterions, as the residual quadrupole moments
contribute to the repulsions at longer range. And by applying multiple
expansions we find that the attractive forces observed at short range are
mainly contributed from electrostatic interactions among higher-order electric
moments. We argue that the scenario for attractive interactions discussed in
this work is applicable to systems of charged nanoparticles or colloidal
solutions with macroions.Comment: 23 pages, 11 figures, 1 tabl
The Effects of a Gentle Yoga Program on Sleep, Mood, and Blood Pressure in Older Women with Restless Legs Syndrome (RLS): A Preliminary Randomized Controlled Trial
Objective. To examine the effects of yoga versus an educational film program on sleep, mood, perceived stress, and sympathetic activation in older women with RLS. Methods. Participants were drawn from a larger trial regarding the effects of yoga on cardiovascular disease risk profiles in overweight, sedentary postmenopausal women. Seventy-five women were randomized to receive either an 8-week yoga (n = 38) or educational film (n = 37) program. All 75 participants completed an RLS screening questionnaire. The 20 women who met all four diagnostic criteria for RLS (n = 10 yoga, 10 film group) comprised the population for this nested study. Main outcomes assessed pre- and post-treatment included: sleep (Pittsburgh Sleep Quality Index), stress (Perceived Stress Scale), mood (Profile of Mood States, State-Trait Anxiety Inventory), blood pressure, and heart rate. Results. The yoga group demonstrated significantly greater improvements than controls in multiple domains of sleep quality and mood, and significantly greater reductions in insomnia prevalence, anxiety, perceived stress, and blood pressure (all P's≤0.05). Adjusted intergroup effect sizes for psychosocial variables were large, ranging from 1.9 for state anxiety to 2.6 for sleep quality. Conclusions. These preliminary findings suggest yoga may offer an effective intervention for improving sleep, mood, perceived stress, and blood pressure in older women with RLS
Pairing Symmetry in the Anisotropic Fermi Superfluid under p-wave Feshbach Resonance
The anisotropic Fermi superfluid of ultra-cold Fermi atoms under the p-wave
Feshbach resonance is studied theoretically. The pairing symmetry of the ground
state is determined by the strength of the atom-atom magnetic dipole
interaction. It is for a strong dipole interaction; while it becomes , up to a rotation about z, for a weak one (Here < 1 is a
numerical coefficient). By changing the external magnetic field or the atomic
gas density, a phase transition between these two states can be driven. We
discuss how the pairing symmetry of the ground state can be determined in the
time-of-flight experiments.Comment: 12 pages, 7 figure
Civil Forfeiture and the Eighth Amendment After \u3cem\u3eAustin\u3c/em\u3e
Imagine owning an expensive piece of property, a piece of real estate perhaps, or maybe a car or boat. Now imagine having your property forcefully taken away from you because someone suspects, or pretends to suspect, that you are using the property in the commission of criminal acts. Then, imagine having to hire a lawyer and start a lawsuit to recover your property. After spending a small fortune in legal fees to recover your own property, imagine you lose your lawsuit, not because you could not prove your rightful ownership before its forceful seizure, but because you could not prove that the person who seized the property lacked a reasonable suspicion that you were using the property in the commission of criminal acts or that you were not in fact using the property in the commission of criminal acts. Finally, imagine that your only recourse is buying your property back from the person who took it. Not likely to happen in America? Think again. It might not be likely to happen in America if a private party forcefully seized your property. But if your own government took it, you are in deep trouble. This is, in fact, what is happening all over America thanks to 21 U.S.C. § 881 (Section 881), the civil forfeiture statute, and other state and federal forfeiture provision
- …