1,692 research outputs found

    Heralded magnetism in non-Hermitian atomic systems

    Full text link
    Quantum phase transitions are usually studied in terms of Hermitian Hamiltonians. However, cold-atom experiments are intrinsically non-Hermitian due to spontaneous decay. Here, we show that non-Hermitian systems exhibit quantum phase transitions that are beyond the paradigm of Hermitian physics. We consider the non-Hermitian XY model, which can be implemented using three-level atoms with spontaneous decay. We exactly solve the model in one dimension and show that there is a quantum phase transition from short-range order to quasi-long-range order despite the absence of a continuous symmetry in the Hamiltonian. The ordered phase has a frustrated spin pattern. The critical exponent ν\nu can be 1 or 1/2. Our results can be seen experimentally with trapped ions, cavity QED, and atoms in optical lattices.Comment: 7 pages + appendi

    Entanglement tongue and quantum synchronization of disordered oscillators

    Full text link
    We study the synchronization of dissipatively-coupled van der Pol oscillators in the quantum limit, when each oscillator is near its quantum ground state. Two quantum oscillators with different frequencies exhibit an entanglement tongue, which is the quantum analogue of an Arnold tongue. It means that the oscillators are entangled in steady state when the coupling strength is greater than a critical value, and the critical coupling increases with detuning. An ensemble of many oscillators with random frequencies still exhibits a synchronization phase transition in the quantum limit, and we analytically calculate how the critical coupling depends on the frequency disorder. Our results can be experimentally observed with trapped ions or neutral atoms.Comment: 11 pages, 5 figure

    Will mobile video become the killer application for 3G? - an empirical model for media convergence

    Get PDF
    Mobile carriers have continually rolled out 3G mobile video applications to increase their revenue and profits. The presumption is that video is superior to the already successful SMS, ringtones, and pictures, and can create greater value to users. However, recent market surveys revealed contradicting results. Motivated by this discrepancy, we propose in this paper a parsimonious model for user acceptance of mobile entertainment as digital convergence. Integrating research on Information Systems, Flow, and Media Psychology, we take a unique approach to user acceptance of digital convergence - platform migration. Our key proposition is that the interaction between media types and the platform-specific constraints is the key determinant of user evaluation. Particularly, users' involvement in the media is determined by both the entertaining time span on the original platform and the attentional constraint of the new platform. The mismatch between the two spans can result in lower level involvement, which in turn cause no or even negative user emotional responses. The model was tested with empirical data. We discuss the theoretical contributions, strategic and design implications, and future research directions derived from this theoretical framewor

    Perturbative Wilson loops from unquenched Monte Carlo simulations at weak couplings

    Full text link
    Perturbative expansions of several small Wilson loops are computed through next-to-next-to-leading order in unquenched lattice QCD, from Monte Carlo simulations at weak couplings. This approach provides a much simpler alternative to conventional diagrammatic perturbation theory, and is applied here for the first time to full QCD. Two different sets of lattice actions are considered: one set uses the unimproved plaquette gluon action together with the unimproved staggered-quark action; the other set uses the one-loop-improved Symanzik gauge-field action together with the so-called ``asqtad'' improved-staggered quark action. Simulations are also done with different numbers of dynamical fermions. An extensive study of the systematic uncertainties is presented, which demonstrates that the small third-order perturbative component of the observables can be reliably extracted from simulation data. We also investigate the use of the rational hybrid Monte Carlo algorithm for unquenched simulations with unimproved-staggered fermions. Our results are in excellent agreement with diagrammatic perturbation theory, and provide an important cross-check of the perturbation theory input to a recent determination of the strong coupling αMSˉ(MZ)\alpha_{\bar{\rm MS}}(M_Z) by the HPQCD collaboration.Comment: 14 pages, 8 figure

    Studies on electrostatic interactions of colloidal particles under two-dimensional confinement

    Full text link
    We study the effective electrostatic interactions between a pair of charged colloidal particles without salt ions while the system is confined in two dimensions. In particular we use a simplified model to elucidate the effects of rotational fluctuations in counterion distribution. The results exhibit effective colloidal attractions under appropriate conditions. Meanwhile, long-range repulsions persist over most of our studied cases. The repulsive forces arise from the fact that in two dimensions the charged colloids cannot be perfectly screened by counterions, as the residual quadrupole moments contribute to the repulsions at longer range. And by applying multiple expansions we find that the attractive forces observed at short range are mainly contributed from electrostatic interactions among higher-order electric moments. We argue that the scenario for attractive interactions discussed in this work is applicable to systems of charged nanoparticles or colloidal solutions with macroions.Comment: 23 pages, 11 figures, 1 tabl

    The Effects of a Gentle Yoga Program on Sleep, Mood, and Blood Pressure in Older Women with Restless Legs Syndrome (RLS): A Preliminary Randomized Controlled Trial

    Get PDF
    Objective. To examine the effects of yoga versus an educational film program on sleep, mood, perceived stress, and sympathetic activation in older women with RLS. Methods. Participants were drawn from a larger trial regarding the effects of yoga on cardiovascular disease risk profiles in overweight, sedentary postmenopausal women. Seventy-five women were randomized to receive either an 8-week yoga (n = 38) or educational film (n = 37) program. All 75 participants completed an RLS screening questionnaire. The 20 women who met all four diagnostic criteria for RLS (n = 10 yoga, 10 film group) comprised the population for this nested study. Main outcomes assessed pre- and post-treatment included: sleep (Pittsburgh Sleep Quality Index), stress (Perceived Stress Scale), mood (Profile of Mood States, State-Trait Anxiety Inventory), blood pressure, and heart rate. Results. The yoga group demonstrated significantly greater improvements than controls in multiple domains of sleep quality and mood, and significantly greater reductions in insomnia prevalence, anxiety, perceived stress, and blood pressure (all P's≤0.05). Adjusted intergroup effect sizes for psychosocial variables were large, ranging from 1.9 for state anxiety to 2.6 for sleep quality. Conclusions. These preliminary findings suggest yoga may offer an effective intervention for improving sleep, mood, perceived stress, and blood pressure in older women with RLS

    Pairing Symmetry in the Anisotropic Fermi Superfluid under p-wave Feshbach Resonance

    Full text link
    The anisotropic Fermi superfluid of ultra-cold Fermi atoms under the p-wave Feshbach resonance is studied theoretically. The pairing symmetry of the ground state is determined by the strength of the atom-atom magnetic dipole interaction. It is kzk_z for a strong dipole interaction; while it becomes kziβkyk_z - i \beta k_y, up to a rotation about z, for a weak one (Here β\beta < 1 is a numerical coefficient). By changing the external magnetic field or the atomic gas density, a phase transition between these two states can be driven. We discuss how the pairing symmetry of the ground state can be determined in the time-of-flight experiments.Comment: 12 pages, 7 figure

    Civil Forfeiture and the Eighth Amendment After \u3cem\u3eAustin\u3c/em\u3e

    Get PDF
    Imagine owning an expensive piece of property, a piece of real estate perhaps, or maybe a car or boat. Now imagine having your property forcefully taken away from you because someone suspects, or pretends to suspect, that you are using the property in the commission of criminal acts. Then, imagine having to hire a lawyer and start a lawsuit to recover your property. After spending a small fortune in legal fees to recover your own property, imagine you lose your lawsuit, not because you could not prove your rightful ownership before its forceful seizure, but because you could not prove that the person who seized the property lacked a reasonable suspicion that you were using the property in the commission of criminal acts or that you were not in fact using the property in the commission of criminal acts. Finally, imagine that your only recourse is buying your property back from the person who took it. Not likely to happen in America? Think again. It might not be likely to happen in America if a private party forcefully seized your property. But if your own government took it, you are in deep trouble. This is, in fact, what is happening all over America thanks to 21 U.S.C. § 881 (Section 881), the civil forfeiture statute, and other state and federal forfeiture provision
    corecore