36,523 research outputs found

    Neural Networks: Implementations and Applications

    Get PDF
    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering area

    Neural Network Applications

    Get PDF
    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering area

    Using genetic algorithms with grammar encoding to generate neural networks

    Get PDF
    Kitano's approach to neural network design is extended in the sense that not just the neural network structure, but also the values of the weights are coded in the chromosome. Experimental results are presented demonstrating the capability of the technique in the solution of a standard test problem

    Composite Fermions and Landau Level Mixing in the Fractional Quantum Hall Effect

    Full text link
    The reduction of the energy gap due to Landau level mixing, characterized by the dimensionless parameter λ=(e2/Ï”l0)/ℏωc\lambda = (e^2/\epsilon l_0)/\hbar\omega_c, has been calculated by variational Monte Carlo for the fractional quantum Hall effect at filling fractions Îœ=1/3\nu=1/3 and 1/5 using a modified version of Jain's composite fermion wave functions. These wave functions exploit the Landau level mixing already present in composite fermion wave functions by introducing a partial Landau level projection operator. Results for the energy gaps are consistent with experimental observations in nn-type GaAs, but we conclude that Landau level mixing alone cannot account for the significantly smaller energy gaps observed in pp-type systems.Comment: 11 pages, RevTex, 2 figures in compressed tar .ps forma

    Within-Subject Joint Independent Component Analysis of Simultaneous fMRI/ERP in an Auditory Oddball Paradigm

    Get PDF
    The integration of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) can contribute to characterizing neural networks with high temporal and spatial resolution. This research aimed to determine the sensitivity and limitations of applying joint independent component analysis (jICA) within-subjects, for ERP and fMRI data collected simultaneously in a parametric auditory frequency oddball paradigm. In a group of 20 subjects, an increase in ERP peak amplitude ranging 1–8 ÎŒV in the time window of the P300 (350–700 ms), and a correlated increase in fMRI signal in a network of regions including the right superior temporal and supramarginal gyri, was observed with the increase in deviant frequency difference. JICA of the same ERP and fMRI group data revealed activity in a similar network, albeit with stronger amplitude and larger extent. In addition, activity in the left pre- and post-central gyri, likely associated with right hand somato-motor response, was observed only with the jICA approach. Within-subject, the jICA approach revealed significantly stronger and more extensive activity in the brain regions associated with the auditory P300 than the P300 linear regression analysis. The results suggest that with the incorporation of spatial and temporal information from both imaging modalities, jICA may be a more sensitive method for extracting common sources of activity between ERP and fMRI

    Integrating Evolutionary Computation with Neural Networks

    Get PDF
    There is a tremendous interest in the development of the evolutionary computation techniques as they are well suited to deal with optimization of functions containing a large number of variables. This paper presents a brief review of evolutionary computing techniques. It also discusses briefly the hybridization of evolutionary computation and neural networks and presents a solution of a classical problem using neural computing and evolutionary computing technique
    • 

    corecore