research

Composite Fermions and Landau Level Mixing in the Fractional Quantum Hall Effect

Abstract

The reduction of the energy gap due to Landau level mixing, characterized by the dimensionless parameter λ=(e2/ϵl0)/ωc\lambda = (e^2/\epsilon l_0)/\hbar\omega_c, has been calculated by variational Monte Carlo for the fractional quantum Hall effect at filling fractions ν=1/3\nu=1/3 and 1/5 using a modified version of Jain's composite fermion wave functions. These wave functions exploit the Landau level mixing already present in composite fermion wave functions by introducing a partial Landau level projection operator. Results for the energy gaps are consistent with experimental observations in nn-type GaAs, but we conclude that Landau level mixing alone cannot account for the significantly smaller energy gaps observed in pp-type systems.Comment: 11 pages, RevTex, 2 figures in compressed tar .ps forma

    Similar works

    Full text

    thumbnail-image

    Available Versions