42 research outputs found

    Why pharmacokinetic differences among oral triptans have little clinical importance: a comment

    Get PDF
    Triptans, selective 5-HT1B/1D receptor agonists, are specific drugs for the acute treatment of migraine that have the same mechanism of action. Here, it is discussed why the differences among kinetic parameters of oral triptans have proved not to be very important in clinical practice. There are three main reasons: (1) the differences among the kinetic parameters of oral triptans are smaller than what appears from their average values; (2) there is a large inter-subject, gender-dependent, and intra-subject (outside/during the attack) variability of kinetic parameters related to the rate and extent of absorption, i.e., those which are considered as critical for the response; (3) no dose-concentration–response curves have been defined and it is, therefore, impossible both to compare the kinetics of triptans, and to verify the objective importance of kinetic differences; (4) the importance of kinetic differences is outweighed by non-kinetic factors of variability of response to triptans. If no oral formulations are found that can allow more predictable pharmacokinetics, the same problems will probably also arise with new classes of drugs for the acute treatment of migraine

    Enhanced pharmacological efficacy of sumatriptan due to modification of its physicochemical properties by inclusion in selected cyclodextrins

    Get PDF
    The study focused on the pharmacological action of sumatriptan, in particular its antiallodynic and antihyperalgesic properties, as an effect of cyclodextrinic inclusion of sumatriptan, resulting in changes of its physicochemical qualities such as dissolution and permeability through artificial biological membranes, which had previously been examined in vitro in a gastro-intestinal model. The inclusion of sumatriptan into β-cyclodextrin and 2-hydroxylpropylo-β-cyclodextrin by kneading was confirmed with the use of spectral (fourier-transform infrared spectroscopy (FT-IR); solid state nuclear magnetic resonance spectroscopy with magic angle spinning condition, 1H and 13C MAS NMR) and thermal (differential scanning calorimetry (DSC)) methods. A precise indication of the domains of sumatriptan responsible for its interaction with cyclodextrin cavities was possible due to a theoretical approach to the analysis of experimental spectra. A high-performance liquid chromatography with a diode-array detector method (HPLC-DAD) was employed to determine changes in the concentration of sumatriptan during dissolution and permeability experiments. The inclusion of sumatriptan in complex with cyclodextrins was found to significantly modify its dissolution profiles by increasing the concentration of sumatriptan in complexed form in an acceptor solution compared to in its free form. Following complexation, sumatriptan manifested an enhanced ability to permeate through artificial biological membranes in a gastro-intestinal model for both cyclodextrins at all pH values. As a consequence of the greater permeability of sumatriptan and its increased dissolution from the complexes, an improved pharmacological response was observed when cyclodextrin complexes were applied

    Regression Modeling for Improved Precision

    No full text

    Rufinamide: Clinical pharmacokinetics and concentration-response relationships in patients with epilepsy.

    No full text
    Rufinamide is a new, orally active antiepileptic drug (AED), which has been found to be effective in the treatment of partial seizures and drop attacks associated with the Lennox-Gastaut syndrome. When taken with food, rufinamide is relatively well absorbed in the lower dose range, with approximately dose-proportional plasma concentrations up to 1,600 mg/day, but less than dose-proportional plasma concentrations at higher doses due to reduced oral bioavailability. Rufinamide is not extensively bound to plasma proteins. During repeated dosing, steady state is reached within 2 days, consistent with its elimination half-life of 6-10 h. The apparent volume of distribution (V(d)/F) and apparent oral clearance (CL/F) are related to body size, the best predictor being body surface area. Rufinamide is not a substrate of cytochrome P450 (CYP450) enzymes and is extensively metabolized via hydrolysis by carboxylesterases to a pharmacologically inactive carboxylic acid derivative, which is excreted in the urine. Rufinamide pharmacokinetics are not affected by impaired renal function. Potential differences in rufinamide pharmacokinetics between children and adults have not been investigated systematically in formal studies. Although population pharmacokinetic modeling suggests that in the absence of interacting comedication rufinamide CL/F may be higher in children than in adults, a meaningful comparison of data across age groups is complicated by age-related differences in doses and in proportion of patients receiving drugs known to increase or to decrease rufinamide CL/F. A study investigating the effect of rufinamide on the pharmacokinetics of the CYP3A4 substrate triazolam and an oral contraceptive interaction study showed that rufinamide has some enzyme-inducing potential in man. Findings from population pharmacokinetic modeling indicate that rufinamide does not modify the CL/F of topiramate or valproic acid, but may slightly increase the CL/F of carbamazepine and lamotrigine and slightly decrease the CL/F of phenobarbital and phenytoin (all predicted changes were <20%). These changes in the pharmacokinetics of associated AEDs are unlikely to make it necessary to change the dosages of these AEDs given concomitantly with rufinamide, with the exception that consideration should be given to reducing the dose of phenytoin. Based on population pharmacokinetic modeling, lamotrigine, topiramate, or benzodiazepines do not affect the pharmacokinetics of rufinamide, but valproic acid may increase plasma rufinamide concentrations, especially in children in whom plasma rufinamide concentrations could be increased substantially. Conversely, comedication with carbamazepine, vigabatrin, phenytoin, phenobarbital, and primidone was associated with a slight-to-moderate decrease in plasma rufinamide concentrations, ranging from a minimum of -13.7% in female children comedicated with vigabatrin to a maximum of -46.3% in female adults comedicated with phenytoin, phenobarbital, or primidone. In population modeling using data from placebo-controlled trials, a positive correlation has been identified between reduction in seizure frequency and steady-state plasma rufinamide concentrations. The probability of adverse effects also appears to be concentration-related

    Balance-of-payments theory and the united kinglom experience

    No full text
    Purpose. The overall aim of the present study was to investigate retrospectively the feasibility and utility of model-based clinical trial simulation as applied to the clinical development of naratriptan with effect measured on a categorical scale. Methods. A PK-PD model for naratriptan was developed by using information gathered from previous naratriptan and sumatriptan preclinical and clinical trials. The phase IIa naratriptan data were used to check the PK-PD model in its ability to describe future data. A further PK-PD model was developed by using the phase IIa naratriptan data, and a phase IIb trial was designed by simulation with the use of Matlab. The design resulting from clinical trial simulation was compared with that derived by using D-optimal design. Results. The PK-PD model showed reasonable agreement with the data observed in the phase IIa naratriptan clinical trial. Clinical trial simulation resulted in a design with four or five arms at 0 mg, 2.5 and/or 5 mg, 10 mg, and 20 mg, PD measurements to be taken at 0, 2, and 4 or 6 h and at least 150 patients per arm. A sub-D-optimal design resulted in two dosing arms at 0 and 10 mg and PD measurements to be taken at 1 and 2 h. Conclusions. Clinical trial simulation is a useful tool for the quantitative assessment of the influence of the controllable factors and is the only tool for the quantitative assessment of the uncontrollable factors on the power of a clinical trial

    Early clinical experience with subcutaneous naratriptan in the acute treatment of migraine: a dose-ranging study.

    Full text link
    Naratriptan is a novel, potent agonist at the 5HT1B/1D receptor. A total of 335 migraine patients were treated in this randomized, double-blind, placebo-controlled, dose-ranging, in-clinic study, to evaluate the efficacy, safety and tolerability of five doses of subcutaneous (sc) naratriptan (0.5, 1, 2.5, 5 or 10 mg) in comparison with sc sumatriptan (6 mg) and placebo in the acute treatment of a moderate/severe migraine attack. Headache relief [reduction of headache severity from moderate or severe (grade 2/3) to mild or none (grade 1/0)] at 1 and 2 h after each dose, was reported by a statistically significantly higher proportion of patients for all doses of sc naratriptan and sc sumatriptan (6 mg) than for placebo. The percentages of patients with headache relief at 2 h post-dose were: naratriptan (0.5 mg) 65%, (1 mg) 75%, (2.5 mg) 83%, (5 mg) 94% and (10 mg) 91%; sumatriptan (6 mg) 89%; placebo 41%, (P < 0.005). The earliest report of a statistically significant difference compared with placebo for the times assessed was with sc naratriptan (10 mg) at 10 min post-dose (P = 0.023). The percentages of patients reporting adverse events were dose-related; sc naratriptan (0.5 mg) 33%, (1 mg) 29%, (2.5 mg) 43%, (5 mg) 59% and (10 mg) 71%; sc sumatriptan 53%; placebo 22%. There were no clinically significant changes in electrocardiogram (ECG), vital signs or laboratory parameters. Systemic exposure increased proportionally to the dose, the absorption of sc naratriptan was rapid (tmax = 10 min) and the half-life was 5 h. In conclusion, sc naratriptan was an effective and well-tolerated acute treatment for migraine. Copyright 1998 Lippincott Williams & Wilkin
    corecore