277 research outputs found

    SPECT/CT imaging of the lumbar spine in chronic low back pain: a case report

    Get PDF
    Mechanical low back pain is a common indication for Nuclear Medicine imaging. Whole-body bone scan is a very sensitive but poorly specific study for the detection of metabolic bone abnormalities. The accurate localisation of metabolically active bone disease is often difficult in 2D imaging but single photon emission computed tomography/computed tomography (SPECT/CT) allows accurate diagnosis and anatomic localisation of osteoblastic and osteolytic lesions in 3D imaging. We present a clinical case of a patient referred for evaluation of chronic lower back pain with no history of trauma, spinal surgery, or cancer. Planar whole-body scan showed heterogeneous tracer uptake in the lumbar spine with intense localisation to the right lateral aspect of L3. Integrated SPECT/CT of the lumbar spine detected active bone metabolism in the right L3/L4 facet joint in the presence of minimal signs of degenerative osteoarthrosis on CT images, while a segment demonstrating more gross degenerative changes was more quiescent with only mild tracer uptake. The usefulness of integrated SPECT/CT for anatomical and functional assessment of back pain opens promising opportunities both for multi-disciplinary clinical assessment and treatment for manual therapists and for research into the effectiveness of manual therapies

    Comparison of SPECT bone scintigraphy with MRI for diagnosis of meniscal tears

    Get PDF
    BACKGROUND: Scintigraphy has been considered as competitive to MRI, but limited data are available on the accuracy of single photon emission tomography (SPECT) compared with MRI for the assessment of meniscal tears. Our objective was to assess the value of SPECT in comparison to MRI. METHODS: Between January 2003 and March 2004, sixteen patients were studied with both modalities and the accuracy rates of SPECT scan results, and MRI findings in the diagnosis of meniscal tears were compared. Arthroscopy was the gold standard. RESULTS: The respective sensitivity rate, specificity rate, and positive and negative predictive accuracies of MRI were 89%, 94%, 93%, and 79% and for SPECT those were 78%, 94%, 94%, and 88%. There was good agreement on the presence or absence of tears between two modalities (ΞΊ statistic = 0.699). CONCLUSION: SPECT and MRI are both valuable imaging techniques. SPECT is a useful alternative when MRI is unavailable or unsuitable and it is beneficial when more possible accuracy is desired (such as when MRI results are either inconclusive or conflict with other clinical data)

    Standardized volumetric 3D-analysis of SPECT/CT imaging in orthopaedics: overcoming the limitations of qualitative 2D analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SPECT/CT combines high resolution anatomical 3D computerized tomography (CT) and single photon emission computerized tomography (SPECT) as functional imaging, which provides 3D information about biological processes into a single imaging modality. The clinical utility of SPECT/CT imaging has been recognized in a variety of medical fields and most recently in orthopaedics; however, clinical adoption has been limited due to shortcomings of analytical tools available. Specifically, SPECT analyses are mainly qualitative due to variation in overall metabolic uptake among patients. Furthermore, most analyses are done in 2D, although rich 3D data are available. Consequently, it is difficult to quantitatively compare the position, size, and intensity of SPECT uptake regions among patients, and therefore difficult to draw meaningful clinical conclusions.</p> <p>Methods</p> <p>We propose a method for normalizing orthopaedic SPECT/CT data that enables standardised 3D volumetric quantitative measurements and comparison among patients. Our method is based on 3D localisation using clinically relevant anatomical landmarks and frames of reference, along with intensity value normalisation using clinically relevant reference regions. Using the normalised data, we describe a thresholding technique to distinguish clinically relevant hot spots from background activity.</p> <p>Results</p> <p>Using an exemplar comparison of two patients, we demonstrate how the normalised, 3D-rendered data can provide a richer source of clinical information and allow quantitative comparison of SPECT/CT measurements across patients. Specifically, we demonstrate how non-normalized SPECT/CT analysis can lead to different clinical conclusions than the normalized SPECT/CT analysis, and that normalized quantitative analysis can be a more accurate indicator of pathology.</p> <p>Conclusions</p> <p>Conventional orthopaedic frames of reference, 3D volumetric data analysis and thresholding are used to distinguish clinically relevant hot spots from background activity. Our goal is to facilitate a standardised approach to quantitative data collection and comparison of clinical studies using SPECT/CT, enabling more widespread clinical use of this powerful imaging tool.</p

    The Hybrid SPECT/CT as an Additional Lymphatic Mapping Tool in Patients with Breast Cancer

    Get PDF
    Background Conventional lymphoscintigraphy does not always define the exact anatomic location of a sentinel node. The lymphatic drainage pattern may be unusual or may not be shown at all. The recently introduced hybrid SPECT/CT imaging could help overcome these difficulties. SPECT is a tomographic version of conventional lymphoscintigraphy and the images have better contrast and resolution. When fused with the anatomical details provided by CT into one image, a meaningful surgical β€˜β€˜roadmap’’ can be created. So far, there is little literature on the use of hybrid SPECT/CT in lymphatic mapping in patients with breast cancer. The purpose of this review was to report on these publications, including our own experience, focusing on patient selection, SPECT/CT settings, anatomic localization, and the detection of additional sentinel nodes. Methods The majority of investigators did not formulate indications for additional SPECT/CT after conventional imaging but scanned all patients eligible for sentinel node biopsy. The SPECT/CT settings used in the studies of this review were mostly similar, but the methods used for conventional imaging were more variable. Results All studies demonstrated an improved anatomical localization by performing additional SPECT/CT; sentinel nodes outside the axilla or nodes close to the injection sit

    The future of hybrid imagingβ€”part 1: hybrid imaging technologies and SPECT/CT

    Get PDF
    Since the 1990s, hybrid imaging by means of software and hardware image fusion alike allows the intrinsic combination of functional and anatomical image information. This review summarises in three parts the state-of-the-art of dual-technique imaging, with a focus on clinical applications. We will attempt to highlight selected areas of potential improvement of combined imaging technologies and new applications. In this first part, we briefly review the origins of hybrid imaging and comment on the status and future development of single photon emission tomography (SPECT)/computed tomography (CT). In short, we could predict that, within 10Β years, we may see all existing dual-technique imaging systems, including SPECT/CT, in clinical routine use worldwide. SPECT/CT, in particular, may evolve into a whole-body imaging technique with supplementary use in dosimetry applications

    Bone metabolic activity in hyperostosis cranialis interna measured with 18F-fluoride PET

    Get PDF
    F-18-Fluoride PET/CT is a relatively undervalued diagnostic test to measure bone metabolism in bone diseases. Hyperostosis cranialis interna (HCI) is a (hereditary) bone disease characterised by endosteal hyperostosis and osteosclerosis of the skull and the skull base. Bone overgrowth causes entrapment and dysfunction of several cranial nerves. The aim of this study is to compare standardised uptake values (SUVs) at different sites in order to quantify bone metabolism in the affected anatomical regions in HCI patients. Nine affected family members, seven non-affected family members and nine non-HCI non-family members underwent F-18-fluoride PET/CT scans. SUVs were systematically measured in the different regions of interest: frontal bone, sphenoid bone, petrous bone and clivus. Moreover, the average F-18-fluoride uptake in the entire skull was measured by assessing the uptake in axial slides. Visual assessment of the PET scans of affected individuals was performed to discover the process of disturbed bone metabolism in HCI. F-18-Fluoride uptake is statistically significantly higher in the sphenoid bone and clivus regions of affected family members. Visual assessment of the scans of HCI patients is relevant in detecting disease severity and the pattern of disturbed bone metabolism throughout life. F-18-Fluoride PET/CT is useful in quantifying the metabolic activity in HCI and provides information about the process of disturbed bone metabolism in this specific disorder. Limitations are a narrow window between normal and pathological activity and the influence of age. This study emphasises that F-18-fluoride PET/CT may also be a promising diagnostic tool for other metabolic bone disorders, even those with an indolent course

    The role of PET/CT in detection of gastric cancer recurrence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the course of surveillance of gastric cancer recurrence after curative resection, contrast CT scan is used in general. However, new findings from CT scan are not always confirmatory for the recurrence. In this case, we usually use short-term follow up strategy or therapeutic intervention with clinical decision. Recently, the use of fusion Positron Emission Tomography/Computed Tomography (PET/CT) is increasing. The purpose of this study is to evaluate the efficacy and usefulness of PET/CT for detecting recurrence of gastric cancer after curative resection.</p> <p>Methods</p> <p>Fifty two patients who received curative resection of gastric cancer and had undergone PET/CT and contrast CT for surveillance of recurrence until Dec 2006 in Seoul National University Hospital were analyzed retrospectively. Recurrence of gastric cancer was validated by histologic confirmation (n = 17) or serial contrast CT follow up with at least 5 month interval (n = 35). McNemar's test and Fisher's exact test were used to evaluate sensitivity and specificity of PET/CT and contrast CT.</p> <p>Results</p> <p>Of 52 patients, 38 patients were confirmed as recurrence. The sensitivity was 68.4% (26/38) for PET/CT and 89.4% (34/38) for contrast CT (p = 0.057). The specificity was 71.4% (10/14) and 64.2% (9/14), respectively (p = 1.0). In terms of the recurred sites, the sensitivity and specificity of PET/CT were similar to those of contrast CT in all sites except peritoneum. Contrast CT was more sensitive than PET/CT (p = 0.039) for detecting peritoneal seeding. Additional PET/CT on contrast CT showed no further increase of positive predictive value regardless of sites. Among 13 patients whose image findings between two methods were discordant and tissue confirmation was difficult, the treatment decision was made in 7 patients based on PET/CT, showing the final diagnostic accuracy of 42.8% (3/7).</p> <p>Conclusion</p> <p>PET/CT was as sensitive and specific as contrast CT in detection of recurred gastric cancer except peritoneal seeding. However, additional PET/CT on contrast CT did not increase diagnostic accuracy in detection of recurred gastric cancer. Further studies are warranted to validate the role of PET/CT in detection of gastric cancer recurrence.</p

    Value of MRI and diffusion-weighted MRI for the diagnosis of locally recurrent rectal cancer

    Get PDF
    OBJECTIVES: To evaluate the accuracy of standard MRI, diffusion-weighted MRI (DWI) and fusion images for the diagnosis of locally recurrent rectal cancer in patients with a clinical suspicion of recurrence. METHODS: Forty-two patients with a clinical suspicion of recurrence underwent 1.5-T MRI consisting of standard T2-weighted FSE (3 planes) and an axial DWI (b0,500,1000). Two readers (R1,R2) independently scored the likelihood of recurrence; [1] on standard MRI, [2] on standard MRI+DWI, and [3] on T2-weighted+DWI fusion images. RESULTS: 19/42 patients had a local recurrence. R1 achieved an area under the ROC-curve (AUC) of 0.99, sensitivity 100% and specificity 83% on standard MRI versus 0.98, 100% and 91% after addition of DWI (p = 0.78). For R2 these figures were 0.87, 84% and 74% on standard MRI and 0.91, 89% and 83% with DWI (p = 0.09). Fusion images did not significantly improve the performance. Interobserver agreement was kappa0.69 for standard MRI, kappa0.82 for standard MRI+DWI and kappa0.84 for the fusion images. CONCLUSIONS: MRI is accurate for the diagnosis of locally recurrent rectal cancer in patients with a clinical suspicion of recurrence. Addition of DWI does not significantly improve its performance. However, with DWI specificity and interobserver agreement increase. Fusion images do not improve accuracy
    • …
    corecore