230 research outputs found
Hot coronal loops associated with umbral brightenings
We analyzed AIA/SDO high-cadence images in all bands, HMI/SDO data, soft
X-ray images from SXI/GOES-15, and Halpha images from the GONG network. We
detected umbral brightenings that were visible in all AIA bands as well as in
Halpha. Moreover, we identified hot coronal loops that connected the
brightenings with nearby regions of opposite magnetic polarity. These loops
were initially visible in the 94 A band, subsequently in the 335 A band, and in
one case in the 211 A band. A differential emission measure analysis revealed
plasma with an average temperature of about 6.5x10^6 K. This behavior suggests
cooling of impulsively heated loops.Comment: A&A, 2013, in pres
Synoptic study of the corona at meter wavelength
The Mark III Nancay Radioheliograph is used to observe the Sun at 169 MHz with a time resolution of 25 East-West and North-South images per second. When the brightness distribution of the Sun is stable during the eight hours of daily observation, a two dimensional map can be produced using the technique of earth rotation synthesis. The best images are obtained during the period April to August, when the declination of the Sun is high to give a good coverage in the uv plane and a reasonable North-South resolution. The spatial resolution is 1.5' East-West and in summer, 3.5' North-South. The maps are calibrated using Cygnus A as a reference. Examples of the maps are given and discussed
IRIS Observations of Spicules and Structures Near the Solar Limb
We have analyzed IRIS spectral and slit-jaw observations of a quiet region
near the South Pole. In this article we present an overview of the
observations, the corrections, and the absolute calibration of the intensity.
We focus on the average profiles of strong (Mg ii h and k, C ii and Si iv), as
well as of weak spectral lines in the near ultraviolet (NUV) and the far
ultraviolet (FUV), including the Mg ii triplet, thus probing the solar
atmosphere from the low chromosphere to the transition region. We give the
radial variation of bulk spectral parameters as well as line ratios and
turbulent velocities. We present measurements of the formation height in lines
and in the NUV continuum, from which we find a linear relationship between the
position of the limb and the intensity scale height. We also find that low
forming lines, such as the Mg ii triplet, show no temporal variations above the
limb associated with spicules, suggesting that such lines are formed in a
homogeneous atmospheric layer and, possibly, that spicules are formed above the
height of 2 arc sec. We discuss the spatio-temporal structure near the limb
from images of intensity as a function of position and time. In these images,
we identify p-mode oscillations in the cores of lines formed at low heights
above the photosphere, slow moving bright features in O i and fast moving
bright features in C ii. Finally, we compare the Mg ii k and h line profiles,
together with intensity values of the Balmer lines from the literature, with
computations from the PROM57Mg non-LTE model developed at the Institut
d'Astrophysique Spatiale and estimated values of the physical parameters. We
obtain electron temperatures in the range of K at small heights to
K at large heights, electron densities from to
cm and a turbulent velocity of km/s.Comment: Accepted for publication in Solar Physic
- …