28 research outputs found

    A Randomized Phase II Trial of Pioglitazone for Lung Cancer Chemoprevention in High Risk Current and Former Smokers

    Get PDF
    Lung cancer chemoprevention, especially in high-risk former smokers, has great potential to reduce lung cancer incidence and mortality. Thiazolidinediones prevent lung cancer in preclinical studies, and diabetics receiving thiazolidinediones have lower lung cancer rates which led to our double-blind, randomized, phase II placebo-controlled trial of oral pioglitazone in high risk current or former smokers with sputum cytologic atypia or known endobronchial dysplasia. Bronchoscopy was performed at study entry and after completing of six months of treatment. Biopsies were histologically scored, and primary endpoint analysis tested worst biopsy scores (Max) between groups; Dysplasia index (DI) and average score (Avg) changes were secondary endpoints. Biopsies also received an inflammation score. The trial accrued 92 subjects (47 pioglitazone, 45 placebo), and 76 completed both bronchoscopies (39 pioglitazone, 37 placebo). Baseline dysplasia was significantly worse for current smokers, and 64% of subjects had mild or greater dysplasia at study entry. Subjects receiving pioglitazone did not exhibit improvement in bronchial dysplasia. Former smokers treated with pioglitazone exhibited a slight improvement in Max, while current smokers exhibited slight worsening. While statistically significant changes in Avg and DI were not observed in the treatment group, former smokers exhibited a slight decrease in both Avg and DI. Negligible Avg and DI changes occurred in current smokers. A trend towards decreased Ki-67 labeling index occurred in former smokers with baseline dysplasia receiving pioglitazone. While pioglitazone did not improve endobronchial histology in this high-risk cohort, specific lesions showed histologic improvement and further study is needed to better characterize responsive dysplasia

    Dysregulation of Gap Junction Function and Cytokine Production in Response to Non-Genotoxic Polycyclic Aromatic Hydrocarbons in an In Vitro Lung Cell Model

    No full text
    Polycyclic aromatic hydrocarbons (PAHs), prevalent contaminants in our environment, in many occupations, and in first and second-hand smoke, pose significant adverse health effects. Most research focused on the genotoxic high molecular weight PAHs (e.g., benzo[a]pyrene), however, the nongenotoxic low molecular weight (LMW) PAHs are emerging as potential co-carcinogens and tumor promoters known to dysregulate gap junctional intercellular communication (GJIC), activate mitogen activated protein kinase pathways, and induce the release of inflammatory mediators. We hypothesize that inflammatory mediators resulting from LMW PAH exposure in mouse lung epithelial cell lines are involved in the dysregulation of GJIC. We used mouse lung epithelial cell lines and an alveolar macrophage cell line in the presence of a binary PAH mixture (1:1 ratio of fluoranthene and 1-methylanthracene; PAH mixture). Parthenolide, a pan-inflammation inhibitor, reversed the PAH-induced inhibition of GJIC, the decreased CX43 expression, and the induction of KC and TNF. To further determine the direct role of a cytokine in regulating GJIC, recombinant TNF (rTNF) was used to inhibit GJIC and this response was further enhanced in the presence of the PAH mixture. Collectively, these findings support a role for inflammation in regulating GJIC and the potential to target these early stage cancer pathways for therapeutics
    corecore