54 research outputs found
Supernova Remnant Evolution in Wind Bubbles: A Closer Look at Kes 27
Massive Stars (> 8 solar masses) lose mass in the form of strong winds. These
winds accumulate around the star, forming wind-blown bubbles. When the star
explodes as a supernova (SN), the resulting shock wave expands within this
wind-blown bubble, rather than the interstellar medium. The properties of the
resulting remnant, its dynamics and kinematics, the morphology, and the
resulting evolution, are shaped by the structure and properties of the
wind-blown bubble. In this article we focus on Kes 27, a supernova remnant
(SNR) that has been proposed by Chen et al (2008) to be evolving in a
wind-blown bubble, explore its properties, and investigate whether the
properties could be ascribed to evolution of a SNR in a wind-blown bubble. Our
initial model does not support this conclusion, due to the fact that the
reflected shock is expanding into much lower densities.Comment: 5 pages, 3 figures. Revised version submitted to High Energy Density
Physics. To be published in a special issue of the proceedings of the 2012
HEDLA conferenc
Simulated X-ray Spectra From Ionized Wind-Blown Nebulae around Massive Stars
Using an ionization gasdynamics code, we simulate a model of the wind-blown
bubble around a 40 solar mass star. We use this to compute the X-ray spectra
from the bubble, which can be directly compared to observations. We outline our
methods and techniques for these computations, and contrast them with previous
calculations. Our simulated X-ray spectra compare reasonably well with observed
spectra of Wolf-Rayet bubbles. They suggest that X-ray nebulae around massive
stars may not be easily detectable, consistent with observations.Comment: 7 pages, 2 figures. Revised and shortened version following referee
comments. Accepted to High Energy Density Physic
New evidence for strong nonthermal effects in Tycho's supernova remnant
For the case of Tycho's supernova remnant (SNR) we present the relation
between the blast wave and contact discontinuity radii calculated within the
nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is
demonstrated that these radii are confirmed by recently published Chandra
measurements which show that the observed contact discontinuity radius is so
close to the shock radius that it can only be explained by efficient CR
acceleration which in turn makes the medium more compressible. Together with
the recently determined new value erg of the SN
explosion energy this also confirms our previous conclusion that a TeV
gamma-ray flux of erg/(cms) is to be expected from
Tycho's SNR. Chandra measurements and the HEGRA upper limit of the TeV
gamma-ray flux together limit the source distance to kpc.Comment: 5 pages, 4 figures. Accepted for publication in Astrophysics and
Space Science, Proc. of "The Multi-Messenger Approach to High-Energy
Gamma-ray Sources (Third Workshop on the Nature of Unidentified High-Energy
Sources)", Barcelona, July 4-7, 200
Circumstellar interaction in supernovae in dense environments - an observational perspective
In a supernova explosion, the ejecta interacting with the surrounding
circumstellar medium (CSM) give rise to variety of radiation. Since CSM is
created from the mass lost from the progenitor star, it carries footprints of
the late time evolution of the star. This is one of the unique ways to get a
handle on the nature of the progenitor star system. Here, I will focus mainly
on the supernovae (SNe) exploding in dense environments, a.k.a. Type IIn SNe.
Radio and X-ray emission from this class of SNe have revealed important
modifications in their radiation properties, due to the presence of high
density CSM. Forward shock dominance of the X-ray emission, internal free-free
absorption of the radio emission, episodic or non-steady mass loss rate,
asymmetry in the explosion seem to be common properties of this class of SNe.Comment: Fixed minor typos. 31 pages, 9 figures, accepted for publication in
Space Science Reviews. Chapter in International Space Science Institute
(ISSI) Book on "Supernovae" to be published in Space Science Reviews by
Springe
Physics of rotation in stellar models
In these lecture notes, we present the equations presently used in stellar
interior models in order to compute the effects of axial rotation. We discuss
the hypotheses made. We suggest that the effects of rotation might play a key
role at low metallicity.Comment: 32 pages, 7 figures, lectures, CNRS school, will be published by
Springe
First Stars. II. Evolution with mass loss
The first stars are assumed to be predominantly massive. Although, due to the
low initial abundances of heavy elements the line-driven stellar winds are
supposed to be inefficient in the first stars, these stars may loose a
significant amount of their initial mass by other mechanisms.
In this work, we study the evolution with a prescribed mass loss rate of very
massive, galactic and pregalactic, Population III stars, with initial
metallicities and , respectively, and initial masses
100, 120, 150, 200, and 250 during the hydrogen and helium burning
phases.
The evolution of these stars depends on their initial mass, metallicity and
the mass loss rate. Low metallicity stars are hotter, compact and luminous, and
they are shifted to the blue upper part in the Hertzprung-Russell diagram. With
mass loss these stars provide an efficient mixing of nucleosynthetic products,
and depending on the He-core mass their final fate could be either
pair-instability supernovae or energetic hypernovae. These stars contributed to
the reionization of the universe and its enrichment with heavy elements, which
influences the subsequent star formation properties.Comment: Accepted for publication in Astrophysics & Space Science. 15 pages,
18 figure
Supernova Interaction with a Circumstellar Medium
The explosion of a core collapse supernova drives a powerful shock front into
the wind from the progenitor star. A layer of shocked circumstellar gas and
ejecta develops that is subject to hydrodynamic instabilities. The hot gas can
be observed directly by its X-ray emission, some of which is absorbed and
re-radiated at lower frequencies by the ejecta and the circumstellar gas.
Synchrotron radiation from relativistic electrons accelerated at the shock
fronts provides information on the mass loss density if free-free absorption
dominates at early times or the size of the emitting region if synchrotron
self-absorption dominates. Analysis of the interaction leads to information on
the density and structure of the ejecta and the circumstellar medium, and the
abundances in these media. The emphasis here is on the physical processes
related to the interaction.Comment: 22 pages, 7 figures, to appear as a Chapter in "Supernovae and
Gamma-Ray Bursts," edited by K. W. Weiler (Springer-Verlag
Time-dependent high-energy gamma-ray signal from accelerated particles in core-collapse supernovae: the case of SN 1993J
International audienceSome core-collapse supernovae are likely to be efficient cosmic ray accelerators up to the PeV range, and therefore, to potentially play an important role in the overall Galactic cosmic ray population. The TeV gamma-ray domain can be used to study particle acceleration in the multi-TeV and PeV range. This motivates the study of the detectability of such supernovae by current and future gamma-ray facilities. The gamma-ray emission of core-collapse supernovae strongly depends on the level of the two-photon annihilation process: high-energy gamma-ray photons emitted at the expanding shock wave following the supernova explosion can interact with soft photons from the supernova photosphere through the pair production channel, thereby strongly suppressing the flux of gamma-rays leaving the system. In the case of SN 1993J, whose photospheric and shock-related parameters are well measured, we calculate the temporal evolution of the expected gamma-ray attenuation by accounting for the temporal and geometrical effects. We find the attenuation to be of about 10 orders of magnitude in the first few days after the supernova explosion. The probability of detection of a supernova similar to SN 1993J with the Cherenkov Telescope Array is highest if observations are performed either earlier than 1 d, or later than 10 d after the explosion, when the gamma-ray attenuation decreases to about two orders of magnitude
- …