53 research outputs found

    Additive Kernels for Gaussian Process Modeling

    Get PDF
    Gaussian Process (GP) models are often used as mathematical approximations of computationally expensive experiments. Provided that its kernel is suitably chosen and that enough data is available to obtain a reasonable fit of the simulator, a GP model can beneficially be used for tasks such as prediction, optimization, or Monte-Carlo-based quantification of uncertainty. However, the former conditions become unrealistic when using classical GPs as the dimension of input increases. One popular alternative is then to turn to Generalized Additive Models (GAMs), relying on the assumption that the simulator's response can approximately be decomposed as a sum of univariate functions. If such an approach has been successfully applied in approximation, it is nevertheless not completely compatible with the GP framework and its versatile applications. The ambition of the present work is to give an insight into the use of GPs for additive models by integrating additivity within the kernel, and proposing a parsimonious numerical method for data-driven parameter estimation. The first part of this article deals with the kernels naturally associated to additive processes and the properties of the GP models based on such kernels. The second part is dedicated to a numerical procedure based on relaxation for additive kernel parameter estimation. Finally, the efficiency of the proposed method is illustrated and compared to other approaches on Sobol's g-function

    Invariances of random fields paths, with applications in Gaussian Process Regression

    Get PDF
    We study pathwise invariances of centred random fields that can be controlled through the covariance. A result involving composition operators is obtained in second-order settings, and we show that various path properties including additivity boil down to invariances of the covariance kernel. These results are extended to a broader class of operators in the Gaussian case, via the Lo\`eve isometry. Several covariance-driven pathwise invariances are illustrated, including fields with symmetric paths, centred paths, harmonic paths, or sparse paths. The proposed approach delivers a number of promising results and perspectives in Gaussian process regression

    On ANOVA decompositions of kernels and Gaussian random field paths

    Get PDF
    The FANOVA (or "Sobol'-Hoeffding") decomposition of multivariate functions has been used for high-dimensional model representation and global sensitivity analysis. When the objective function f has no simple analytic form and is costly to evaluate, a practical limitation is that computing FANOVA terms may be unaffordable due to numerical integration costs. Several approximate approaches relying on random field models have been proposed to alleviate these costs, where f is substituted by a (kriging) predictor or by conditional simulations. In the present work, we focus on FANOVA decompositions of Gaussian random field sample paths, and we notably introduce an associated kernel decomposition (into 2^{2d} terms) called KANOVA. An interpretation in terms of tensor product projections is obtained, and it is shown that projected kernels control both the sparsity of Gaussian random field sample paths and the dependence structure between FANOVA effects. Applications on simulated data show the relevance of the approach for designing new classes of covariance kernels dedicated to high-dimensional kriging

    Gaussian process models for periodicity detection

    Get PDF
    We consider the problem of detecting and quantifying the periodic component of a function given noise-corrupted observations of a limited number of input/output tuples. Our approach is based on Gaussian process regression which provides a flexible non-parametric framework for modelling periodic data. We introduce a novel decomposition of the covariance function as the sum of periodic and aperiodic kernels. This decomposition allows for the creation of sub-models which capture the periodic nature of the signal and its complement. To quantify the periodicity of the signal, we derive a periodicity ratio which reflects the uncertainty in the fitted sub-models. Although the method can be applied to many kernels, we give a special emphasis to the Mat\'ern family, from the expression of the reproducing kernel Hilbert space inner product to the implementation of the associated periodic kernels in a Gaussian process toolkit. The proposed method is illustrated by considering the detection of periodically expressed genes in the arabidopsis genome.Comment: in PeerJ Computer Science, 201

    An analytic comparison of regularization methods for Gaussian Processes

    Get PDF
    Gaussian Processes (GPs) are a popular approach to predict the output of a parameterized experiment. They have many applications in the field of Computer Experiments, in particular to perform sensitivity analysis, adaptive design of experiments and global optimization. Nearly all of the applications of GPs require the inversion of a covariance matrix that, in practice, is often ill-conditioned. Regularization methodologies are then employed with consequences on the GPs that need to be better understood.The two principal methods to deal with ill-conditioned covariance matrices are i) pseudoinverse and ii) adding a positive constant to the diagonal (the so-called nugget regularization).The first part of this paper provides an algebraic comparison of PI and nugget regularizations. Redundant points, responsible for covariance matrix singularity, are defined. It is proven that pseudoinverse regularization, contrarily to nugget regularization, averages the output values and makes the variance zero at redundant points. However, pseudoinverse and nugget regularizations become equivalent as the nugget value vanishes. A measure for data-model discrepancy is proposed which serves for choosing a regularization technique.In the second part of the paper, a distribution-wise GP is introduced that interpolates Gaussian distributions instead of data points. Distribution-wise GP can be seen as an improved regularization method for GPs

    Bayesian Quantile and Expectile Optimisation

    Full text link
    Bayesian optimisation is widely used to optimise stochastic black box functions. While most strategies are focused on optimising conditional expectations, a large variety of applications require risk-averse decisions and alternative criteria accounting for the distribution tails need to be considered. In this paper, we propose new variational models for Bayesian quantile and expectile regression that are well-suited for heteroscedastic settings. Our models consist of two latent Gaussian processes accounting respectively for the conditional quantile (or expectile) and variance that are chained through asymmetric likelihood functions. Furthermore, we propose two Bayesian optimisation strategies, either derived from a GP-UCB or Thompson sampling, that are tailored to such models and that can accommodate large batches of points. As illustrated in the experimental section, the proposed approach clearly outperforms the state of the art
    • …
    corecore