180 research outputs found

    How else can we detect Fast Radio Bursts?

    Get PDF
    We discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres. For models involving Crab-like giant pulses, no appreciable contemporaneous emission is expected at other wavelengths. Magnetar giant flares, driven by the reconfiguration of the magnetosphere, however, can produce both contemporaneous bursts at other wavelengths as well as afterglow-like emission. We conclude that the best chances are: (i) prompt short GRB-like emission; (ii) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds); (iii) a high energy afterglow emission. Case (i) could be tested by coordinated radio and high-energy experiments. Case (ii) could be seen in a coordinated radio-optical surveys, \eg\ by the Palomar Transient Factory in a 60-second frame as a transient object of m=15βˆ’20m=15-20 magnitude with an expected optical detection rate of about 0.1~hrβˆ’1^{-1}, an order of magnitude higher than in radio. Shallow, but large-area sky surveys such as ASAS-SN and EVRYSCOPE could also detect prompt optical flashes from the more powerful Lorimer-burst clones. The best constraints on the optical-to-radio power for this kind of emission could be provided by future observations with facilities like LSST. Case (iii) might be seen in relatively rare cases that the relativistically ejected magnetic blob is moving along the line of sight

    Flares from Galactic centre pulsars: a new class of X-ray transients?

    Get PDF
    Despite intensive searches, the only pulsar within 0.1 pc of the central black hole in our Galaxy, Sgr A*, is a radio-loud magnetar. Since magnetars are rare among the Galactic neutron star population, and a large number of massive stars are already known in this region, the Galactic centre (GC) should harbor a large number of neutron stars. Population syntheses suggest several thousand neutron stars may be present in the GC. Many of these could be highly energetic millisecond pulsars which are also proposed to be responsible for the GC gamma-ray excess. We propose that the presence of a neutron star within 0.03~pc from Sgr~A* can be revealed by the shock interactions with the disk around the central black hole. As we demonstrate, these interactions result in observable transient non-thermal X-ray and gamma-ray emission over timescales of months, provided that the spin down luminosity of the neutron star is L_{sd}~10^{35} erg/s. Current limits on the population of normal and millisecond pulsars in the GC region suggest that a number of such pulsars are present with such luminosities.Comment: 4 pages, 4 figure

    The detectability of eccentric binary pulsars

    Get PDF
    Studies of binary pulsars provide insight into various theories of physics. Detection of such systems is challenging due to the Doppler modulation of the pulsed signal caused by the orbital motion of the pulsar. We investigated the loss of sensitivity in eccentric binary systems for different types of companions. This reduction of sensitivity should be considered in future population synthesis models for binary pulsars. This loss can be recovered partially by employing the `acceleration search' algorithm and even better by using the `acceleration-jerk search' algorithm.Comment: 2 pages. To appear in the proceeding of "The Metrewavelength Sky Conference" held at NCRA-TIFR, Pune, from December 9-13 2013, to mark 50 years of radio astronomy research at the Tata Institute of Fundamental Research (TIFR), as well as 10 years of operation of the Giant Metrewave Radio Telescope (GMRT) as an international observator

    On gigahertz spectral turnovers in pulsars

    Get PDF
    Pulsars are known to emit non-thermal radio emission that is generally a power-law function of frequency. In some cases, a turnover is seen at frequencies around 100~MHz. Kijak et al. have reported the presence of a new class of ''Gigahertz Peaked Spectrum'' (GPS) pulsars that show spectral turnovers at frequencies around 1 GHz. We apply a model based on free-free thermal absorption to explain these turnovers in terms of surrounding material such as the dense environments found in HII regions, Pulsar Wind Nebulae (PWNe), or in cold, partially ionized molecular clouds. We show that the turnover frequency depends on the electron temperature of the environment close to the pulsar, as well as the emission measure along the line of sight. We fitted this model to the radio fluxes of known GPS pulsars and show that it can replicate the GHz turnover. From the thermal absorption model, we demonstrate that normal pulsars would exhibit a GPS-like behaviour if they were in a dense environment. We discuss the application of this model in the context of determining the population of neutron stars within the central parsec of the Galaxy. We show that a non-negligible fraction of this population might exhibit high-frequency spectral turnovers, which has implications on the detectability of these sources in the Galactic centre.Comment: 7 pages, 3 figures, Accepted for publication in MNRA

    Variability of the Pulsed Radio Emission from the Large Magellanic Cloud Pulsar PSR J0529-6652

    Get PDF
    We have studied the variability of PSR J0529-6652, a radio pulsar in the LMC, using observations conducted at 1390 MHz with the Parkes 64-m telescope. PSR J0529-6652 is detectable as a single pulse emitter, with amplitudes that classify the pulses as giant pulses. This makes PSR J0529-6652 the second known giant pulse emitter in the LMC, after PSR B0540-69. The fraction of the emitted pulses detectable from PSR J0529-6652 at this frequency is roughly two orders of magnitude greater than it is for either PSR B0540-69 or the Crab pulsar (if the latter were located in the LMC). We have measured a pulse nulling fraction of 83.3 \pm 1.5% and an intrinsic modulation index of 4.07 \pm 0.29 for PSR J0529-6652. The modulation index is significantly larger than values previously measured for typical radio pulsars but is comparable to values reported for members of several other neutron star classes. The large modulation index, giant pulses, and large nulling fraction suggest that this pulsar is phenomenologically more similar to these other, more variable sources, despite having spin and physical characteristics that are typical of the unrecycled radio pulsar population. The large modulation index also does not appear to be consistent with the small value predicted for this pulsar by a model of polar cap emission outlined by Gil & Sendyk (2000). This conclusion depends to some extent on the assumption that PSR J0529-6652 is exhibiting core emission, as suggested by its simple profile morphology, narrow profile width, and previously measured profile polarization characteristics.Comment: 24 pages, including 7 figures and 2 tables. Accepted to the Astrophysical Journa
    • …
    corecore