We discuss possible electromagnetic signals accompanying Fast Radio Bursts
(FRBs) that are expected in the scenario where FRBs originate in neutron star
magnetospheres. For models involving Crab-like giant pulses, no appreciable
contemporaneous emission is expected at other wavelengths. Magnetar giant
flares, driven by the reconfiguration of the magnetosphere, however, can
produce both contemporaneous bursts at other wavelengths as well as
afterglow-like emission. We conclude that the best chances are: (i) prompt
short GRB-like emission; (ii) a contemporaneous optical flash that can reach
naked eye peak luminosity (but only for a few milliseconds); (iii) a high
energy afterglow emission. Case (i) could be tested by coordinated radio and
high-energy experiments. Case (ii) could be seen in a coordinated radio-optical
surveys, \eg\ by the Palomar Transient Factory in a 60-second frame as a
transient object of m=15−20 magnitude with an expected optical detection rate
of about 0.1~hr−1, an order of magnitude higher than in radio. Shallow,
but large-area sky surveys such as ASAS-SN and EVRYSCOPE could also detect
prompt optical flashes from the more powerful Lorimer-burst clones. The best
constraints on the optical-to-radio power for this kind of emission could be
provided by future observations with facilities like LSST. Case (iii) might be
seen in relatively rare cases that the relativistically ejected magnetic blob
is moving along the line of sight