298 research outputs found
Ionization of Infalling Gas
H-alpha emission from neutral halo clouds probes the radiation and
hydrodynamic conditions in the halo. Armed with such measurements, we can
explore how radiation escapes from the Galactic plane and how infalling gas can
survive a trip through the halo. The Wisconsin H-Alpha Mapper (WHAM) is one of
the most sensitive instruments for detecting and mapping optical emission from
the ISM. Here, we present recent results exploring the ionization of two
infallling high-velocity complexes. First, we report on our progress mapping
H-alpha emission covering the full extent of Complex A. Intensities are faint
(<100 mR; EM <0.2 pc cm^-6 but correlate on the sky and in velocity with 21-cm
emission. Second, we explore the ionized component of some Anti-Center Complex
clouds studied by Peek et al. (2007) that show dynamic shaping from interaction
with the Galactic halo.Comment: 4 pages, 2 figures; to appear in proceedings of "The Role of
Disk-Halo Interaction in Galaxy Evolution: Outflow vs Infall?" held in
Espinho, Portugal during 2008 Augus
Spontaneous symmetry breaking on the lattice generated by Yukawa interaction
We study by numerical simulation a lattice Yukawa model with naive fermions
at intermediate values of the Yukawa coupling when the nearest neighbour
coupling \kp of the scalar field is very weakly ferromagnetic (\kp
\approx 0) or even antiferromagnetic () and the nonvanishing value
of \vev is generated by the Yukawa interaction. The renormalized Yukawa
coupling achieves here its maximal value and this -region is thus of
particular importance for lattice investigations of strong Yukawa interaction.
However, here the scalar field propagators have a very complex structure caused
by fermion loop corrections and by the proximity of phases with
antiferromagnetic properties. We develop methods for analyzing these
propagators and for extracting the physical observables. We find that going
into the negative \kp region, the scalar field renormalization constant
becomes small and does not seem to exceed the unitarity bound, making the
existence of a nontrivial fixed point in the investigated Yukawa model quite
unlikely.Comment: 22 pages plus 13 figure
Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions
A microscopic heterogeneous system under random influence is considered. The
randomness enters the system at physical boundary of small scale obstacles as
well as at the interior of the physical medium. This system is modeled by a
stochastic partial differential equation defined on a domain perforated with
small holes (obstacles or heterogeneities), together with random dynamical
boundary conditions on the boundaries of these small holes.
A homogenized macroscopic model for this microscopic heterogeneous stochastic
system is derived. This homogenized effective model is a new stochastic partial
differential equation defined on a unified domain without small holes, with
static boundary condition only. In fact, the random dynamical boundary
conditions are homogenized out, but the impact of random forces on the small
holes' boundaries is quantified as an extra stochastic term in the homogenized
stochastic partial differential equation. Moreover, the validity of the
homogenized model is justified by showing that the solutions of the microscopic
model converge to those of the effective macroscopic model in probability
distribution, as the size of small holes diminishes to zero.Comment: Communications in Mathematical Physics, to appear, 200
A lattice NRQCD calculation of the mixing parameter B_B
We present a lattice calculation of the B meson B-parameter B_B using the
NRQCD action. The heavy quark mass dependence is explicitly studied over a mass
range between m_b and 4m_b with the and actions. We
find that the ratios of lattice matrix elements and
, which contribute to B_B through mixing, have
significant dependence while that of the leading operator
has little effect. The combined result for
B_B(m_b) has small but non-zero mass dependence, and the B_B(m_b) becomes
smaller by 10% with the 1/m_Q correction compared to the static result. Our
result in the quenched approximation at \beta=5.9 is B_{B_d}(5 GeV) =
0.75(3)(12), where the first error is statistical and the second is a
systematic uncertainty.Comment: 20 pages, 11 figures, uses REVTeX, typos correcte
Effective Electromagnetic Lagrangian at Finite Temperature and Density in the Electroweak Model
Using the exact propagators in a constant magnetic field, the effective
electromagnetic Lagrangian at finite temperature and density is calculated to
all orders in the field strength B within the framework of the complete
electroweak model, in the weak coupling limit. The partition function and free
energy are obtained explicitly and the finite temperature effective coupling is
derived in closed form. Some implications of this result, potentially
interesting to astrophysics and cosmology, are discussed.Comment: 14 pages, Revtex
QCD Corrections to QED Vacuum Polarization
We compute QCD corrections to QED calculations for vacuum polarization in
background magnetic fields. Formally, the diagram for virtual loops
is identical to the one for virtual loops. However due to
confinement, or to the growth of as decreases, a direct
calculation of the diagram is not allowed. At large we consider the
virtual diagram, in the intermediate region we discuss the role of
the contribution of quark condensates \left and at the
low-energy limit we consider the , as well as charged pion
loops. Although these effects seem to be out of the measurement accuracy of
photon-photon laboratory experiments they may be relevant for -ray
burst propagation. In particular, for emissions from the center of the galaxy
(8.5 kpc), we show that the mixing between the neutral pseudo-scalar pion
and photons renders a deviation from the power-law spectrum in the
range. As for scalar quark condensates \left and
virtual loops are relevant only for very high radiation density
and very strong magnetic fields of order .Comment: 15 pages, 4 figures; Final versio
Implementation of a transitional care model for stroke: Perspectives from frontline clinicians, administrators, and COMPASS-TC implementation staff
Background and Objectives: Stroke is a chronic, complex condition that disproportionally affects older adults. Health systems are evaluating innovative transitional care (TC) models to improve outcomes in these patients. The Comprehensive Post-Acute Stroke Services (COMPASS) Study, a large cluster-randomized pragmatic trial, tested a TC model for patients with stroke or transient ischemic attack discharged home from the hospital. The implementation of COMPASS-TC in complex real-world settings was evaluated to identify successes and challenges with integration into the clinical workflow. Research Design and Methods: We conducted a concurrent process evaluation of COMPASS-TC implementation during the first year of the trial. Qualitative data were collected from 4 sources across 19 intervention hospitals. We analyzed transcripts from 43 conference calls with hospital clinicians, individual and group interviews with leaders and clinicians from 9 hospitals, and 2 interviews with the COMPASS-TC Director of Implementation using iterative thematic analysis. Themes were compared to the domains of the RE-AIM framework. Results: Organizational, individual, and community factors related to Reach, Adoption, and Implementation were identified. Organizational readiness was an additional key factor to successful implementation, in that hospitals that were not "organizationally ready" had more difficulty addressing implementation challenges. Discussion and Implications: Multifaceted TC models are challenging to implement. Facilitators of implementation were organizational commitment and capacity, prioritizing implementation of innovative delivery models to provide comprehensive care, being able to address challenges quickly, implementing systems for tracking patients throughout the intervention, providing clinicians with autonomy and support to address challenges, and adequately resourcing the intervention. Clinical Trial Registration: NCT02588664
Flavor changing Z-decays from scalar interactions at a Giga-Z Linear Collider
The flavor changing decay Z -> d_I \bar{d}_J is investigated with special
emphasis on the b \bar{s} final state. Various models for flavor violation are
considered: two Higgs doublet models (2HDM's), supersymmetry (SUSY) with flavor
violation in the up and down-type squark mass matrices and SUSY with flavor
violation mediated by R-parity-violating interaction. We find that, within the
SUSY scenarios for flavor violation, the branching ratio for the decay Z -> b
\bar{s} can reach 10^{-6} for large \tan\beta values, while the typical size
for this branching ratio in the 2HDM's considered is about two orders of
magnitudes smaller at best. Thus, flavor changing SUSY signatures in radiative
Z decays such as Z -> b \bar{s} may be accessible to future ``Z factories''
such as a Giga-Z version of the TESLA design.Comment: 27 pages, 15 figures, REVTeX4. A new section added and a few minor
corrections were made in the tex
Effect of Magnetic-Field on the Microstructure and Macrosegregation in Directionally Solidified Pb-Sn Alloys
An investigation into the influence of a transverse magnetic field (0.45 T) on the mushy zone morphology and macrosegregation in directionally solidified hypoeutectic Pb-Sn alloy shows that the field has no influence on the morphology of dendritic arrays. The field does, however, cause severe distortion in the cellular array morphology. Cellular arrayed growth with the magnetic field results in an extensive channel formation in the mushy zone, as opposed to the well-aligned and uniformly distributed cells formed in the absence of the field. The channels are produced due to the anisotropy in the thermosolutal convection caused by the magnetic field. Macrosegregation, however, along the length of the directionally solidified samples is not influenced by this magnetic field for either the cellular or dendritic arrays
Magnetic Braking in Differentially Rotating, Relativistic Stars
We study the magnetic braking and viscous damping of differential rotation in
incompressible, uniform density stars in general relativity. Differentially
rotating stars can support significantly more mass in equilibrium than
nonrotating or uniformly rotating stars. The remnant of a binary neutron star
merger or supernova core collapse may produce such a "hypermassive" neutron
star. Although a hypermassive neutron star may be stable on a dynamical
timescale, magnetic braking and viscous damping of differential rotation will
ultimately alter the equilibrium structure, possibly leading to delayed
catastrophic collapse. Here we consider the slow-rotation, weak-magnetic field
limit in which E_rot << E_mag << W, where E_rot is the rotational kinetic
energy, E_mag is the magnetic energy, and W is the gravitational binding energy
of the star. We assume the system to be axisymmetric and solve the MHD
equations in both Newtonian gravitation and general relativity. Toroidal
magnetic fields are generated whenever the angular velocity varies along the
initial poloidal field lines. We find that the toroidal fields and angular
velocities oscillate independently along each poloidal field line, which
enables us to transform the original 2+1 equations into 1+1 form and solve them
along each field line independently. The incoherent oscillations on different
field lines stir up turbulent-like motion in tens of Alfven timescales ("phase
mixing"). In the presence of viscosity, the stars eventually are driven to
uniform rotation, with the energy contained in the initial differential
rotation going into heat. Our evolution calculations serve as qualitative
guides and benchmarks for future, more realistic MHD simulations in full 3+1
general relativity.Comment: 26 pages, 27 graphs, 1 table, accepted for publication by Phys. Rev.
- …