125 research outputs found

    Commitment and Promiscuity in the Twenty-First Century

    Get PDF

    Clonal Tracking of Rhesus Macaque Hematopoiesis Highlights a Distinct Lineage Origin for Natural Killer Cells

    Get PDF
    SummaryAnalysis of hematopoietic stem cell function in nonhuman primates provides insights that are relevant for human biology and therapeutic strategies. In this study, we applied quantitative genetic barcoding to track the clonal output of transplanted autologous rhesus macaque hematopoietic stem and progenitor cells over a time period of up to 9.5 months. We found that unilineage short-term progenitors reconstituted myeloid and lymphoid lineages at 1 month but were supplanted over time by multilineage clones, initially myeloid restricted, then myeloid-B clones, and then stable myeloid-B-T multilineage, long-term repopulating clones. Surprisingly, reconstitution of the natural killer (NK) cell lineage, and particularly the major CD16+/CD56− peripheral blood NK compartment, showed limited clonal overlap with T, B, or myeloid lineages, and therefore appears to be ontologically distinct. Thus, in addition to providing insights into clonal behavior over time, our analysis suggests an unexpected paradigm for the relationship between NK cells and other hematopoietic lineages in primates

    BCL2A1a Over-Expression in Murine Hematopoietic Stem and Progenitor Cells Decreases Apoptosis and Results in Hematopoietic Transformation

    Get PDF
    We previously reported the development of a lethal myeloid sarcoma in a non-human primate model utilizing retroviral vectors to genetically modify hematopoietic stem and progenitor cells. This leukemia was characterized by insertion of the vector provirus into the BCL2A1 gene, with resultant BCL2A1 over-expression. There is little information on the role of this anti-apoptotic member of the BCL2 family in hematopoiesis or leukemia induction. Therefore we studied the impact of Bcl2a1a lentiviral over-expression on murine hematopoietic stem and progenitor cells. We demonstrated the anti-apoptotic function of this protein in hematopoietic cells, but did not detect any impact of Bcl2a1a on in vitro cell growth or cell cycle kinetics. In vivo, we showed a higher propensity of HSCs over-expressing Bcl2a1a to engraft and contribute to hematopoiesis. Mice over-expressing Bcl2a1a in the hematologic compartment eventually developed an aggressive malignant disease characterized as a leukemia/lymphoma of B-cell origin. Secondary transplants carried out to investigate the primitive origin of the disease revealed the leukemia was transplantable. Thus, Bcl2a1 should be considered as a protooncogene with a potential role in both lymphoid and myeloid leukemogenesis, and a concerning site for insertional activation by integrating retroviral vectors utilized in hematopoietic stem cell gene therapy.intramural research programs of the National Heart Lung and Blood Institute (CED) of the National Institutes of Healthintramural research programs of the National Heart Lung and Blood Institute (CED) of the National Institutes of Healt

    Commitment and Promiscuity in the Twenty-First Century

    No full text

    An Introduction to the Analysis of Single-Cell RNA-Sequencing Data

    No full text
    The recent development of single-cell RNA sequencing has deepened our understanding of the cell as a functional unit, providing new insights based on gene expression profiles of hundreds to hundreds of thousands of individual cells, and revealing new populations of cells with distinct gene expression profiles previously hidden within analyses of gene expression performed on bulk cell populations. However, appropriate analysis and utilization of the massive amounts of data generated from single-cell RNA sequencing experiments are challenging and require an understanding of the experimental and computational pathways taken between preparation of input cells and output of interpretable data. In this review, we will discuss the basic principles of these new technologies, focusing on concepts important in the analysis of single-cell RNA-sequencing data. Specifically, we summarize approaches to quality-control measures for determination of which single cells to include for further examination, methods of data normalization and scaling to overcome the relatively inefficient capture rate of mRNA from each cell, and clustering and visualization algorithms used for dimensional reduction of the data to a two-dimensional plot. Keywords: single-cell gene expression, RNA sequencing, computational pipeline, microfluidics, drop-seq, sci-seq, principle component analysis, t-distributed stochastic neighbor embeddin

    Blood

    No full text

    Avoidance of stimulation improves engraftment of cultured and retrovirally transduced hematopoietic cells in primates

    No full text
    Recent reports suggest that cells in active cell cycle have an engraftment defect compared with quiescent cells. We used nonhuman primates to investigate this finding, which has direct implications for clinical transplantation and gene therapy applications. Transfer of rhesus CD34(+) cells to culture in stem cell factor (SCF) on the CH-296 fibronectin fragment (FN) after 4 days of culture in stimulatory cytokines maintained cell viability but decreased cycling. Using retroviral marking with two different gene transfer vectors, we compared the engraftment potential of cytokine-stimulated cells versus those transferred to nonstimulatory conditions (SCF on FN alone) before reinfusion. In vivo competitive repopulation studies showed that the level of marking originating from the cells continued in culture for 2 days with SCF on FN following a 4-day stimulatory transduction was significantly higher than the level of marking coming from cells transduced for 4 days and reinfused without the 2-day culture under nonstimulatory conditions. We observed stable in vivo overall gene marking levels of up to 29%. This approach may allow more efficient engraftment of transduced or ex vivo expanded cells by avoiding active cell cycling at the time of reinfusion

    HOXB4 and retroviral vectors: adding fuel to the fire

    No full text
    The transcription factor homeobox B4 (HOXB4) is a promising agent capable of providing a growth advantage to genetically modified hematopoietic stem and progenitor cells (HSPCs). In this issue of the JCI, Zhang and colleagues overexpressed HOXB4 in HSPCs from large animals using retroviral vectors (see the related article beginning on page 1502). Two years after transplantation, most animals developed leukemia, a consequence of combined HOXB4 and deregulated protooncogene expression. These results highlight the risks of combining integrating vectors and growth-promoting genes for clinical applications
    • …
    corecore