164 research outputs found

    New Bounds for Facial Nonrepetitive Colouring

    Full text link
    We prove that the facial nonrepetitive chromatic number of any outerplanar graph is at most 11 and of any planar graph is at most 22.Comment: 16 pages, 5 figure

    Nonrepetitive Colourings of Planar Graphs with O(logn)O(\log n) Colours

    Get PDF
    A vertex colouring of a graph is \emph{nonrepetitive} if there is no path for which the first half of the path is assigned the same sequence of colours as the second half. The \emph{nonrepetitive chromatic number} of a graph GG is the minimum integer kk such that GG has a nonrepetitive kk-colouring. Whether planar graphs have bounded nonrepetitive chromatic number is one of the most important open problems in the field. Despite this, the best known upper bound is O(n)O(\sqrt{n}) for nn-vertex planar graphs. We prove a O(logn)O(\log n) upper bound

    Layout of Graphs with Bounded Tree-Width

    Full text link
    A \emph{queue layout} of a graph consists of a total order of the vertices, and a partition of the edges into \emph{queues}, such that no two edges in the same queue are nested. The minimum number of queues in a queue layout of a graph is its \emph{queue-number}. A \emph{three-dimensional (straight-line grid) drawing} of a graph represents the vertices by points in Z3\mathbb{Z}^3 and the edges by non-crossing line-segments. This paper contributes three main results: (1) It is proved that the minimum volume of a certain type of three-dimensional drawing of a graph GG is closely related to the queue-number of GG. In particular, if GG is an nn-vertex member of a proper minor-closed family of graphs (such as a planar graph), then GG has a O(1)×O(1)×O(n)O(1)\times O(1)\times O(n) drawing if and only if GG has O(1) queue-number. (2) It is proved that queue-number is bounded by tree-width, thus resolving an open problem due to Ganley and Heath (2001), and disproving a conjecture of Pemmaraju (1992). This result provides renewed hope for the positive resolution of a number of open problems in the theory of queue layouts. (3) It is proved that graphs of bounded tree-width have three-dimensional drawings with O(n) volume. This is the most general family of graphs known to admit three-dimensional drawings with O(n) volume. The proofs depend upon our results regarding \emph{track layouts} and \emph{tree-partitions} of graphs, which may be of independent interest.Comment: This is a revised version of a journal paper submitted in October 2002. This paper incorporates the following conference papers: (1) Dujmovic', Morin & Wood. Path-width and three-dimensional straight-line grid drawings of graphs (GD'02), LNCS 2528:42-53, Springer, 2002. (2) Wood. Queue layouts, tree-width, and three-dimensional graph drawing (FSTTCS'02), LNCS 2556:348--359, Springer, 2002. (3) Dujmovic' & Wood. Tree-partitions of kk-trees with applications in graph layout (WG '03), LNCS 2880:205-217, 200

    Rectilinear Crossing Number of Graphs Excluding Single-Crossing Graphs as Minors

    Full text link
    The crossing number of a graph GG is the minimum number of crossings in a drawing of GG in the plane. A rectilinear drawing of a graph GG represents vertices of GG by a set of points in the plane and represents each edge of GG by a straight-line segment connecting its two endpoints. The rectilinear crossing number of GG is the minimum number of crossings in a rectilinear drawing of GG. By the crossing lemma, the crossing number of an nn-vertex graph GG can be O(n)O(n) only if E(G)O(n)|E(G)|\in O(n). Graphs of bounded genus and bounded degree (B\"{o}r\"{o}czky, Pach and T\'{o}th, 2006) and in fact all bounded degree proper minor-closed families (Wood and Telle, 2007) have been shown to admit linear crossing number, with tight Θ(Δn)\Theta(\Delta n) bound shown by Dujmovi\'c, Kawarabayashi, Mohar and Wood, 2008. Much less is known about rectilinear crossing number. It is not bounded by any function of the crossing number. We prove that graphs that exclude a single-crossing graph as a minor have the rectilinear crossing number O(Δn)O(\Delta n). This dependence on nn and Δ\Delta is best possible. A single-crossing graph is a graph whose crossing number is at most one. Thus the result applies to K5K_5-minor-free graphs, for example. It also applies to bounded treewidth graphs, since each family of bounded treewidth graphs excludes some fixed planar graph as a minor. Prior to our work, the only bounded degree minor-closed families known to have linear rectilinear crossing number were bounded degree graphs of bounded treewidth (Wood and Telle, 2007), as well as, bounded degree K3,3K_{3,3}-minor-free graphs (Dujmovi\'c, Kawarabayashi, Mohar and Wood, 2008). In the case of bounded treewidth graphs, our O(Δn)O(\Delta n) result is again tight and improves on the previous best known bound of O(Δ2n)O(\Delta^2 n) by Wood and Telle, 2007 (obtained for convex geometric drawings)

    Anagram-Free Chromatic Number is not Pathwidth-Bounded

    Full text link
    The anagram-free chromatic number is a new graph parameter introduced independently Kam\v{c}ev, {\L}uczak, and Sudakov (2017) and Wilson and Wood (2017). In this note, we show that there are planar graphs of pathwidth 3 with arbitrarily large anagram-free chromatic number. More specifically, we describe 2n2n-vertex planar graphs of pathwidth 3 with anagram-free chromatic number Ω(logn)\Omega(\log n). We also describe knkn vertex graphs with pathwidth 2k12k-1 having anagram-free chromatic number in Ω(klogn)\Omega(k\log n).Comment: 8 pages, 3 figure
    corecore