39 research outputs found
Deciphering Patterns and Drivers of Heat and Carbon Storage in the Southern Ocean
The storage of anomalous heat and carbon in the Southern Ocean in response to increasing greenhouse gases greatly mitigates atmospheric warming and exerts a large impact on the marine ecosystem. However, the mechanisms driving the ocean storage patterns are uncertain. Here using recent hydrographic observations, we compare for the first time the spatial patterns of heat and carbon storage, which show substantial differences in the Southern Ocean, in contrast with the conventional view of simple passive subduction into the thermocline. Using an eddyârich global climate model, we demonstrate that redistribution of the preindustrial temperature field is the dominant control on the heat storage pattern, whereas carbon storage largely results from passive transport of anthropogenic carbon uptake at the surface. Lastly, this study highlights the importance of realistic representation of wind and surface buoyancy flux in climate models to improve future projection of circulation change and thus heat and carbon storage.This work was sponsored by Southern Ocean Carbon and Climate Observations and Modeling Project
under the NSF Award PLRâ1425989 with additional support from NOAA and NASA. A. K. M. was supported by Australian Research Council Fellowship DE170100184. C. O. D. was supported by NASA Award NNX14AL40G and by the Princeton Environmental Institute Grand Challenge initiative
Preconditioning of the Weddell Sea Polynya by the Ocean Mesoscale and Dense Water Overflows
The Weddell Sea polynya is a large opening in the open-ocean sea ice cover associated with intense deep convection in the ocean. A necessary condition to form and maintain a polynya is the presence of a strong subsurface heat reservoir. This study investigates the processes that control the stratification and hence the buildup of the subsurface heat reservoir in the Weddell Sea. To do so, a climate model run for 200 years under preindustrial forcing with two eddying resolutions in the ocean (0.25° CM2.5 and 0.10° CM2.6) is investigated. Over the course of the simulation, CM2.6 develops two polynyas in the Weddell Sea, while CM2.5 exhibits quasi-continuous deep convection but no polynyas, exemplifying that deep convection is not a sufficient condition for a polynya to occur. CM2.5 features a weaker subsurface heat reservoir than CM2.6 owing to weak stratification associated with episodes of gravitational instability and enhanced vertical mixing of heat, resulting in an erosion of the reservoir. In contrast, in CM2.6, the water column is more stably stratified, allowing the subsurface heat reservoir to build up. The enhanced stratification in CM2.6 arises from its refined horizontal grid spacing and resolution of topography, which allows, in particular, a better representation of the restratifying effect by transient mesoscale eddies and of the overflows of dense waters along the continental slope
Preconditioning of the Weddell Sea Polynya by the Ocean Mesoscale and Dense Water Overflows
The Weddell Sea polynya is a large opening in the open-ocean sea ice cover associated with intense deep convection in the ocean. A necessary condition to form and maintain a polynya is the presence of a strong subsurface heat reservoir. This study investigates the processes that control the stratification and hence the buildup of the subsurface heat reservoir in the Weddell Sea. To do so, a climate model run for 200 years under preindustrial forcing with two eddying resolutions in the ocean (0.25° CM2.5 and 0.10° CM2.6) is investigated. Over the course of the simulation, CM2.6 develops two polynyas in the Weddell Sea, while CM2.5 exhibits quasi-continuous deep convection but no polynyas, exemplifying that deep convection is not a sufficient condition for a polynya to occur. CM2.5 features a weaker subsurface heat reservoir than CM2.6 owing to weak stratification associated with episodes of gravitational instability and enhanced vertical mixing of heat, resulting in an erosion of the reservoir. In contrast, in CM2.6, the water column is more stably stratified, allowing the subsurface heat reservoir to build up. The enhanced stratification in CM2.6 arises from its refined horizontal grid spacing and resolution of topography, which allows, in particular, a better representation of the restratifying effect by transient mesoscale eddies and of the overflows of dense waters along the continental slope.C. O. Dufour was supported by the National Aeronautics and Space Administration (NASA) under Award NNX14AL40G and by the Princeton Environmental Institute (PEI) Grand Challenge initiative. A. K. Morrison was supported by the U.S. Department of Energy under Award DE-SC0012457, by the PEI Grand Challenge initiative, and by the Australian Research Council DECRA Fellowship DE170100184. I. Frenger was supported by the Swiss National Science Foundation Early Postdoc Mobility Fellowship P2EZP2-152133 and NASA under Award NNX14AL40G
Roles of the ocean mesoscale in the horizontal supply of mass, heat, carbon and nutrients to the Northern Hemisphere subtropical gyres
Horizontal transport at the boundaries of the subtropical gyres plays a crucial role in providing the nutrients that fuel gyre primary productivity, the heat that helps restratify the surface mixed layer, and the dissolved inorganic carbon (DIC) that influences airâsea carbon exchange. Mesoscale eddies may be an important component of these horizontal transports; however, previous studies have not quantified the horizontal tracer transport due to eddies across the subtropical gyre boundaries. Here we assess the physical mechanisms that control the horizontal transport of mass, heat, nutrients and carbon across the North Pacific and North Atlantic subtropical gyre boundaries using the eddyârich ocean component of a climate model (GFDL's CM2.6) coupled to a simple biogeochemical model (miniâBLING). Our results suggest that horizontal transport across the gyre boundaries supplies a substantial amount of mass and tracers to the ventilated layer of both Northern Hemisphere subtropical gyres, with the Kuroshio and Gulf Stream acting as main exchange gateways. Mass, heat, and DIC supply is principally driven by the timeâmean circulation, whereas nutrient transport differs markedly from the other tracers, as nutrients are mainly supplied to both subtropical gyres by downâgradient eddy mixing across gyre boundaries. A budget analysis further reveals that the horizontal nutrient transport, combining the roles of both mean and eddy components, is responsible for more than three quarters of the total nutrient supply into the subtropical gyres, surpassing a recent estimate based on a coarse resolution model and thus further highlighting the importance of horizontal nutrient transport
Spiraling pathways of global deep waters to the surface of the Southern Ocean
Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60â90 years.V.T., L.D.T., and M.R.M. were supported by NSF OCE-1357072. A.K.M., H.F.D., and
W.W. were supported by the RGCM program of the US Department of Energy under
Contract DE-SC0012457. J.L.S. acknowledges NSFâs Southern Ocean Carbon and
Climate Observations and Modeling project under NSF PLR-1425989, which partially
supported L.D.T. and M.R.M. as well. C.O.D was supported by the National Aeronautics
and Space Administration (NASA) under Award NNX14AL40G and by the Princeton
Environmental Institute Grand Challenge initiative. A.R.G. was supported by a Climate
and Global Change Postdoctoral Fellowship from the National Oceanic and Atmospheric
Administration (NOAA). S.M.G. acknowledges the ongoing support of NOAA/GFDL for
high-end ocean and climate-modeling activities. J.W. acknowledges support from
NSF OCE-1234473 and declare that this work was done as a private venture and not in
the authorâs capacity as an employee of the Jet Propulsion Laboratory, California
Institute of Technology. Computational resources for the SOSE were provided by NSF
XSEDE resource grant OCE130007
Recommended from our members
Author Correction : Spiraling pathways of global deep waters to the surface of the Southern Ocean
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 9 (2018): 209, doi:10.1038/s41467-017-02105-y.Correction to: Nature Communications 8:172 https://doi.org/10.1038/s41467-017-00197-0; Article published online: 2 August 201
Role of Mesoscale Eddies in Cross-Frontal Transport of Heat and Biogeochemical Tracers in the Southern Ocean
This study examines the role of processes transporting tracers across the Polar Front (PF) in the depth interval between the surface and major topographic sills, which this study refers to as the âPF core.â A preindustrial control simulation of an eddying climate model coupled to a biogeochemical model [GFDL Climate Model, version 2.6 (CM2.6)â simplified version of the Biogeochemistry with Light Iron Nutrients and Gas (miniBLING) 0.1° ocean model] is used to investigate the transport of heat, carbon, oxygen, and phosphate across the PF core, with a particular focus on the role of mesoscale eddies. The authors find that the total transport across the PF core results from a ubiquitous Ekman transport that drives the upwelled tracers to the north and a localized opposing eddy transport that induces tracer leakages to the south at major topographic obstacles. In the Ekman layer, the southward eddy transport only partially compensates the northward Ekman transport, while below the Ekman layer, the southward eddy transport dominates the total transport but remains much smaller in magnitude than the near-surface northward transport. Most of the southward branch of the total transport is achieved below the PF core, mainly through geostrophic currents. This study finds that the eddy-diffusive transport reinforces the southward eddy-advective transport for carbon and heat, and opposes it for oxygen and phosphate. Eddy-advective transport is likely to be the leading-order component of eddy-induced transport for all four tracers. However, eddy-diffusive transport may provide a significant contribution to the southward eddy heat transport due to strong along-isopycnal temperature gradients
Large-scale control of the retroflection of the Labrador Current
Abstract The Labrador Current transports cold, relatively fresh, and well-oxygenated waters within the subpolar North Atlantic and towards the eastern American continental shelf. The relative contribution of these waters to either region depends on the eastward retroflection of the Labrador Current at the Grand Banks of Newfoundland. Here, we develop a retroflection index based on the pathway of virtual Lagrangian particles and show that strong retroflection generally occurs when a large-scale circulation adjustment, related to the subpolar gyre, accelerates the Labrador Current and shifts the Gulf Stream northward, partly driven by a northward shift of the wind patterns in the western North Atlantic. Starting in 2008, a particularly strong northward shift of the Gulf Stream dominates the other drivers. A mechanistic understanding of the drivers of the Labrador Current retroflection should help predict changes in the water properties in both export regions, and anticipate their impacts on marine life and deep-water formation