617 research outputs found

    Assay of proteolytic enzyme(s) from Neurospora crassa

    Get PDF
    Assay of proteolytic enzyme(s) from Neurospora crass

    Histidinol dehydrogenase from Neurospora crassa

    Get PDF
    Histidinol dehydrogenase from Neurospora crass

    Computing the Largest Empty Rectangle

    Get PDF
    We consider the following problem: Given a rectangle containing N points, find the largest area subrectangle with sides parallel to those of the original rectangle which contains none of the given points. If the rectangle is a piece of fabric or sheet metal and the points are flaws, this problem is finding the largest-area rectangular piece which can be salvaged. A previously known result [13] takes O(N2)O(N^2 ) worst-case and O(Nlog2N)O(N\log ^2 N) expected time. This paper presents an O(Nlog3N)O(N\log ^3 N) time, O(NlogN)O(N\log N) space algorithm to solve this problem. It uses a divide-and-conquer approach similar to the ones used by Bentley [1] and introduces a new notion of Voronoi diagram along with a method for efficient computation of certain functions over paths of a tree

    Minimum-weight triangulation is NP-hard

    Full text link
    A triangulation of a planar point set S is a maximal plane straight-line graph with vertex set S. In the minimum-weight triangulation (MWT) problem, we are looking for a triangulation of a given point set that minimizes the sum of the edge lengths. We prove that the decision version of this problem is NP-hard. We use a reduction from PLANAR-1-IN-3-SAT. The correct working of the gadgets is established with computer assistance, using dynamic programming on polygonal faces, as well as the beta-skeleton heuristic to certify that certain edges belong to the minimum-weight triangulation.Comment: 45 pages (including a technical appendix of 13 pages), 28 figures. This revision contains a few improvements in the expositio

    Contrasting soil thermal responses to fire in Alaskan tundra and boreal forest

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 120 (2015): 363–378, doi:10.1002/2014JF003180.Recent fire activity throughout Alaska has increased the need to understand postfire impacts on soils and permafrost vulnerability. Our study utilized data and modeling from a permafrost and ecosystem gradient to develop a mechanistic understanding of the short- and long-term impacts of tundra and boreal forest fires on soil thermal dynamics. Fires influenced a variety of factors that altered the surface energy budget, soil moisture, and the organic-layer thickness with the overall effect of increasing soil temperatures and thaw depth. The postfire thickness of the soil organic layer and its impact on soil thermal conductivity was the most important factor determining postfire soil temperatures and thaw depth. Boreal and tundra ecosystems underlain by permafrost experienced smaller postfire soil temperature increases than the nonpermafrost boreal forest from the direct and indirect effects of permafrost on drainage, soil moisture, and vegetation flammability. Permafrost decreased the loss of the insulating soil organic layer, decreased soil drying, increased surface water pooling, and created a significant heat sink to buffer postfire soil temperature and thaw depth changes. Ecosystem factors also played a role in determining postfire thaw depth with boreal forests taking several decades longer to recover their soil thermal properties than tundra. These factors resulted in tundra being less sensitive to postfire soil thermal changes than the nonpermafrost boreal forest. These results suggest that permafrost and soil organic carbon will be more vulnerable to fire as climate warms.We are pleased to acknowledge funding from the US National Science Foundation, grants DEB-1026843 and EF-1065587, to the Marine Biological Laboratory. Additional logistical support was provided by Toolik Field Station and CH2MHill, funded by NSF's Office of Polar Programs.2015-08-2

    Diagnosing air quality changes in the UK during the COVID-19 lockdown using TROPOMI and GEOS-Chem

    Get PDF
    The dramatic and sudden reduction in anthropogenic activity due to lockdown measures in the UK in response to the COVID-19 outbreak has resulted in a concerted effort to estimate local and regional changes in air quality, though changes in underlying emissions remain uncertain. Here we combine satellite observations of tropospheric NO_{2} from TROPOspheric Monitoring Instrument and the Goddard Earth Observing System (GEOS)-Chem 3D chemical transport model to estimate that NO_{x} emissions declined nationwide by ~20% during the lockdown (23 March to 31 May 2020). Regionally, these range from 22% to 23% in the western portion of the country to 29% in the southeast and Manchester, and >40% in London. We apply a uniform 20% lockdown period emission reduction to GEOS-Chem anthropogenic emissions over the UK to determine that decline in lockdown emissions led to a national decline in PM_{2.5} of 1.1 μg m^{−3}, ranging from 0.6 μg m^{−3} in Scotland to 2 μg m^{−3} in the southwest. The decline in emissions in cities (>40%) is greater than the national average and causes an increase in ozone of ~2 ppbv in London and Manchester. The change in ozone and PM_{2.5} concentrations due to emission reductions alone is about half the total change from 2019 to 2020. This emphasizes the need to account for emissions and other factors, in particular meteorology, in future air pollution abatement strategies and regulatory action

    The question of access to the Japanese market

    Get PDF
    This survey focuses on the question of how market structure and different corporate organisational forms might affect access to the Japanese market for industrial goods. The question is how and whether keiretsu corporate structures in Japan constitute an important unofficial barrier in access to the Japanese market for manufactured goods

    Random walk through fractal environments

    Full text link
    We analyze random walk through fractal environments, embedded in 3-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e. of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D of the fractal is less than 2, there is though always a finite rate of unaffected escape. Random walks through fractal sets with D less or equal 2 can thus be considered as defective Levy walks. The distribution of jump increments for D > 2 is decaying exponentially. The diffusive behavior of the random walk is analyzed in the frame of continuous time random walk, which we generalize to include the case of defective distributions of walk-increments. It is shown that the particles undergo anomalous, enhanced diffusion for D_F < 2, the diffusion is dominated by the finite escape rate. Diffusion for D_F > 2 is normal for large times, enhanced though for small and intermediate times. In particular, it follows that fractals generated by a particular class of self-organized criticality (SOC) models give rise to enhanced diffusion. The analytical results are illustrated by Monte-Carlo simulations.Comment: 22 pages, 16 figures; in press at Phys. Rev. E, 200
    corecore