
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Open Dartmouth: Peer-reviewed articles by
Dartmouth faculty Faculty Work

2-1986

Computing the Largest Empty Rectangle Computing the Largest Empty Rectangle

B. Chazelle
Brown University

R. L. Drysdale
Dartmouth College

D. T. Lee
Northwestern University

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

 Part of the Computer Sciences Commons, and the Mathematics Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Chazelle, B.; Drysdale, R. L.; and Lee, D. T., "Computing the Largest Empty Rectangle" (1986). Open
Dartmouth: Peer-reviewed articles by Dartmouth faculty. 2070.
https://digitalcommons.dartmouth.edu/facoa/2070

This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has
been accepted for inclusion in Open Dartmouth: Peer-reviewed articles by Dartmouth faculty by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/faculty
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F2070&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F2070&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F2070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa/2070?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F2070&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

SIAM J. COMPUT.
Voi. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics
022

COMPUTING THE LARGEST EMPTY RECTANGLE*

B. CHAZELLE’, R. L. DRYSDALEt AND D. T. LEE

Abstract. We consider the following problem: Given a rectangle containing N points, find the largest
area subrectangle with sides parallel to those of the original rectangle which contains none of the given
points. If the rectangle is a piece of fabric or sheet metal and the points are flaws, this problem is finding
the largest-area rectangular piece which can be salvaged. A previously known result [13] takes O(N2)
worst-case and O(N log N) expected time. This paper presents an O(N log N) time, O(N log N) space
algorithm to solve this problem. It uses a divide-and-conquer approach similar to the ones used by Bentley
[1] and introduces a new notion of Voronoi diagram along with a method for efficient computation of
certain functions over paths of a tree.

Key words, computational geometry, divide-and-conquer, free tree, location theory, optimization

1. Introduction. We consider the following problem: Given a rectangle containing
n points, find the largest area subrectangle with sides parallel to those of the original
rectangle which contains none of the given points. If the rectangle is a piece of fabric
or sheet metal and the points are flaws, this problem is finding the largest-area
rectangular piece which can be salvaged. The special case in which a largest empty
square is desired has been solved in O(n log n) time using Voronoi diagrams in
Ll-(L-)metric [7], [12], which is just a variation of the largest empty circle problem
studied by Shamos [14], [15]. In [13] an O(n2) worst-case and O(n log2 n) expected-
time algorithm is presented for the largest empty rectangle problem. Other related
problems can be found in [3], [5].

This paper presents an O(n log n) time, O(n log n) space algorithm to solve this
problem. It uses a divide-and-conquer approach similar to the ones used by Bentley 1].

2. General approach. We first note that the largest area rectangle with sides parallel
to the bounding rectangle will have each edge supported by either an edge of the
bounding rectangle or by at least one of the given points. (If the set of points contains
two or more points lying on a vertical or horizontal line, an edge of the largest rectangle
may be supported by more than one point.) Any rectangle is uniquely determined by
its four supports (points or edges of the bounding rectangle). Therefore a naive
algorithm could choose quadruples of support and then test to see if any points lie
inside the rectangle formed. This method requires O(n5) time. However, it is shown
in [13] that the number of such empty rectangles is at most O(n2) and that by carefully
maintaining those rectangles the one with the largest area can be found in O(tl2) time.

We shall in this paper present a divide-and-conquer algorithm. Let Pl, P2," ",P,
be the n points sorted by x-coordinate and Xmin, Xmax, Ymin, and Ymax be the boundaries
of the bounding rectangle. Let the coordinates of point Pi be (xi, Yi). Our algorithm
splits the points into two halves by x-coordinate. We recursively solve the problem
for the sets S {Pl," Pln/2]} and $2 {P[n/21+," Pn}. (The bounding rectangles
of these recursive calls must be adjusted. The right boundary for the left call is xt,,/2
and the left boundary for the right call is Xln/2j/l.) These calls determine the largest

* Received by the editors July 7, 1983, and in revised form September 29, 1984. This research was
supported in part by the National Science Foundation under grants MCS 8202359, and ECS 8121741.

" Department of Computer Science, Brown University, Providence, Rhode Island 02912.
t Department of Mathematics and Computer Science, Dartmouth College, Hanover, New Hampshire

03755.
Department of Electrical Engineering/Computer Science, Northwestern University, Evanston, Illinois

60201.

3OO

COMPUTING THE LARGEST EMPTY RECTANGLE 301

rectangles with all four supporting points or edges in one half or the other. What
remains are rectangles with supports in both halves. These rectangles contain either
three supports in one half and one support in the other or two supports in each half
(see Fig. 1). Our algorithm finds the largest rectangle of each type, and then returns
the largest rectangle found with either all four supports in one half, three supports in
one half and one in the other, or two on each side as the largest rectangle.

FIG. 1. Possible empty rectangles.

Therefore the run time of our algorithm is governed by the time required to find
the largest rectangle with three supports in one half and one in the other and the time
to find the largest rectangle with two supports in each half. That is, we have

T(N) <= 2 T(N/2) + C(N) + D(N),
where T(N) denotes the run time of the algorithm for the largest empty rectangle
problem for N points, C(N) the time for finding the largest empty rectangle with
three supports in one half and one support in the other half and D(N) the time for
finding the rectangle with two supports in each half. As will be shown later, C(N)=
O(N) and D(N) O(N log2 N), which gives T(N) O(N log3 N).

3. Three supports in one half, one in the other. This is the easier of the two
subproblems. We will look at the case of three supports in the left half and one in the
right and present a linear time algorithm for this case. The other case is symmetrical,
and is solved the same way.

Our first observation is that we need only consider approximately n rectangles.
If the left support is a given point pj, the rectangle is completely determined. The upper
edge is supported by the first point above pj which also lies to its right. If no such
point exists, the rectangle is supported by the top edge of the bounding rectangle.
Graphically, this support is found by drawing a horizontal ray to the right from p and
sweeping it upward until it encounters either a point in the left half or the top edge
of the bounding rectangle. Similarly the bottom edge is supported by the first point
below p which also lies to its right if such a point exists, and the bottom edge of the
bounding rectangle otherwise. These are the only top and bottom supports possible if
all three supports are to lie in the left half. Let upper and lower denote, respectively,
the upper and lower supports of the rectangle whose left support is pj. The right support
right is found by extending the rectangle supported above by upper and below by
lower to the right until it encounters either a point in the right half or the right edge
of the bounding rectangle. (Note that if several points in the left half life on a horizontal
line, only the rightmost will support the left side of a rectangle.)

There are [n/2J + 1 rectangles supported by the left edge ofthe bounding rectangle.
If the p are sorted from top to bottom there is one rectangle above the top point, one

302 B. CHAZELLE, R. L. DRYSDALE AND D. T. LEE

between each pair of points, and one below the bottom point. (If two or more points
lie on a horizontal line, then some of these rectangles will be empty.)

A naive algorithm would take each point in the left and find the upper and lower
supports of its rectangle, using O(n) time for each. Finding the right support would
take O(n) additional time. Similarly, the right support of each rectangle supported by
the left side of the bounding rectangle could be found in O(n) time, so the whole
process would take O(nE) time. However, we can find the largest rectangle in O(n)
time given the points sorted by y-coordinate.

Finding the upper and lower supports of rectangles with left support at the left
side of the bounding rectangle is trivial if the points are sorted by y-coordinate. We
present below a linear time algorithm to find the upper, lower and right supports of
each rectangle supported on the left by a point pj in the left half. Suppose that the
points in the left half are sorted from top to bottom as Pl, P2, Pm. gapj is defined
to be the right support of the rectangle supported above by P-I and below by p, with

Po (Xmax, Ymax) and P,,/I (Xmax, Ymin). gap1, gapE, gap, are obtained in linear
time with the points presorted by y-coordinate. Right is initialized to be the leftmost
point in the right half with y-coordinate y, or b -(X’max, Yj) if no such point exists,
where X’max is the right boundary of the current bounding rectangle for the right half.
The arrays aboe and below are used to hold the points with running minimum
x-coordinates (see Fig. 2).

upper- obovePj-

belowj gopj
Iowerj

Fit3. 2. Illustration of supports of a point pj.

Our algorithm uses a stack. It takes advantage of the fact that when processing
the points from top to bottom, the upper support of a point is the first point lying
above it which also lies to its right. Therefore, points lying above the current point
but to its left will never be upper supports for subsequent points and can be eliminated.
A symmetric argument can be made about lower supports for which we process the
points from bottom to top. This gives rise to the following algorithm.

1 Initialize the stack with upper support Po and qo Xmax, Ym,x) SO that top is
Po, x(top) Xmax, y(top) Ymax, above (top) qo and x(qo) X’max.

2. Scan the points p, PE, , P,, from top to bottom. For each pointp encountered
we do the following:
2.1. If x(gap (j)) < x(right (j)) then above (j) is set to gap (j) and to right (j)

otherwise.
2.2. While x(top) -< x(j) do;

if x(above (j)) -> x(above (top)) then above (j) is set to above (top);
pop the stack.

2.3. upper (j) is set to top.
2.4. Push p onto the stack.

COMPUTING THE LARGEST EMPTY RECTANGLE 303

3. Reinitialize the stack with lower support P,,+I and qm+l (Xmax, Ymin) SO that
top is Pro+l, x(top) Xmax, y(top) Ymin, below (top) q,,+l and x(q,,+l) X’rnax-

4. Scan the points Pl, P2, ", Pm from bottom to top. For each pointp encountered
we do the following:
4.1. If x(gap (j+ 1)) <x(right (j)) then below (j) is set to gap (j+ 1) and to

right (j) otherwise.
4.2. While x(top) -< x(j) do;

if x(below (j)) -> x(below (top)) then below (j) is set to below (top);
pop the stack.

4.3. lower (j) is set to top.
4.4. Push p onto the stack.

5. For each point p, j 1, 2,. , rn do;
if x(above (j)) < x(below (j))
then right (j) is set to above (j)
else right (j) is set to below (j).

As can be easily shown, the algorithm examines each candidate left support (steps
2, 4 and 5) once, taking a total of O(m) time. So we conclude this section with the
following.

LEMMA 1. The time C(N) forfinding the largest empty rectangle for Npoints with
three supports in one half and one support in the other half is O(N).

4. Two supports in each half. Notice that the two supports must be on adjacent
sides of the rectangle. Namely, the two supports in the left half must determine either
the upper left corner or the lower left corner of the rectangle and the other two supports
in the right half determine the lower right corner or the upper right corner of the
rectangle respectively. Since these two cases are similar, we shall consider only the
case where the two supports in the left half determine the lower left corner and the
two supports in the right half determine the upper right corner of the rectangle. If we
can identify all the possible lower left corner points in the left half and all the possible
upper right corner points in the right half, then what remains to be solved is to find
the so-called largest empty corner rectangle (LECR) which is determined by a corner
point in each half. Therefore, we shall first compute all the possible corner points in
each half and then devote ourselves to the problem of finding the largest empty corner
rectangle.

4.1. Computation of corner points. We observe that two points Pi and pj determine
the lower left corner point of an empty rectangle iff p is loweri. Thus, the point LC,
i= 1, 2,. ., m, determined by p and lower is a lower left corner point and has as its
x- and y-coordinates equal to x and y(loweri) respectively. In addition to these lower
left corner points we include the points L (Xmin, Yi), 1, 2, , m, i.e., the points
on the left boundary, and the original set of points to form the set CL=
{LC1, LC2," ., LCs} where s<=3m. All the possible upper right corner points in the
right half can be computed in an analogous manner. We now have two sets of corner
points CL= {LC1, LC2, ", LCs} and CR {RC, RC2, ., RCt} and want to find
the largest empty (corner) rectangle whose lower left corner and upper right corner
are from CL and CR respectively. Figure 3 shows the corner points in each half, with
and representing given and newly created points, respectively. Before we give the

algorithm for finding the LECR, some observations are in order. Notice that not every
point in CL can be paired with a point in CR. The empty rectangle that we seek must
be a rectangle with exactly two supports in each half. For example, in Fig. 3 the point

304 B. CHAZELLE, R. L. DRYSDALE AND D. T. LEE

FIG. 3. Newly created corner points.

P in CL can only be paired with point Q in CR (but not Q’). Specifically, the following
pairing condition must be satisfied: the corner point LCi with left support Pt and bottom
support Pb can only be paired with a point RC whose corresponding top support is
higher than Pt and right support higher than Pb. Secondly, since original points are
included in CL and CR, we should not use any of these points as corner points of the
corner rectangle. However, as we will see in the following two lemmas, these problems
will not arise as far as the computation of the LECR is concerned. Inclusion of the
given points in CL and CR is to ensure that the corner rectangle thus determined
contains no given points in its interior.

LEMMA 2. The largest empty corner rectangle cannot use any of the given points as
corner points. Furthermore, the corner points from CL and CR, respectively, satisfy the
pairing condition prescribed above.

Proof. Let the LECR be determined by LCi and RCj for some and j. Suppose
that LC is one of the given points in the left half. Since there exists in CL a point
LCk to the left of LC which is the corner point determined by some point p and LC,
where x(LCk)= x(p) and y(LCk)= y(LC), and LCk can be paired with RCj to form
a larger empty corner rectangle, we have a contradiction. On the other hand, if LCi
violates the pairing condition that the associated left support is higher than RC, then
we can always find another corner point LCk, in CL with y(LCk,) y(LC) that satisfies
the pairing condition and can be paired with RC to form a larger empty corner
rectangle, a contradiction. The case where RC is one of the given points in the right
half or it violates the pairing condition that the associated right support is lower than
LC can be handled in a similar way. This completes the proof.

Thus, the largest empty corner rectangle must use the newly created points as its
corner points. We note that we only require that the corner rectangle contain none of
the given points, so it may contain some of the newly created corner points in its
interior. However, the following lemma rules out this possibility.

LEMMA 3. Ifa corner rectangle does not contain any given point in its interior, then
it must also not contain any newly created corner points.

Proof. Suppose it contains a newly created left corner point LC in its interior.
Let p and p be the two points in the left half that determine LC so that LC and p
have the same y-coordinate. Since the corner rectangle is determined by a lower left
corner and an upper right corner points that are in the left and right halves respectively,
it must contain point p in its interior as well, a contradiction. The case where it contains
a newly created right corner point in its interior can be handled similarly.

COMPUTING THE LARGEST EMPTY RECTANGLE 305

With the above two lemmas we can proceed to find a largest corner rectangle
which is determined by a point in CL and a point in CR and which is "empty" in the
sense that it does not contain any point (including those newly created corner points)
in its interior.

4.2. Computing the largest empty corner rectangle. We first assume that the points
in CL and in CR have been sorted in both x- and y-coordinates. Divide the sets CL
and CR each into two subsets CL1, CL2 and CR1, CR2, respectively, with CL1 above
CL2 and CR1 above CR2, using a horizontal line such that CL1 LJ CR1 is approximately
of the same size as CL2 LJ CR2 (Fig. 4). Assume recursively that we have computed
the LECR in CL1 LJ CR1 and in CL2 U CR2. So we may concentrate on the case where
the lower left corner is in CL2 and upper right corner is in CR1. If E(N) denotes the
time complexity of the latter problem and D(N) denotes that of the former problem,
we have

(2) D(N) _-< 2D(N/2) + E(N).

Our first observation is that we may discard all the points of CR1 that "dominate"
any other. (A point p is said to dominate point q if both p’s x- and y-coordinates are
greater than those of q’s; and a point is maximal if it is not dominated by any other
point.) This is identical to keeping the maxima of the mirror image of CR1 with respect
to the origin, so it can be accomplished in linear time, since the points of CR1 are
sorted in x-order. For points with the same y-coordinate we further trim them by
keeping only the rightmost one that does not dominate any other point in CR1. Similarly,
for points with the same x-coordinate we keep only the topmost point that does not
dominate any other point in CR1. See Fig. 4, in which points eliminated are marked

CL

XX

CL

CR

CR

FIG. 4. Subdivision of the points into four subsets and the trimming operation.

as x. The reason why they can be trimmed is that they cannot form the LECR with a
point in CL2. Similar remarks can be made about CL2, and we can trim this set in a
similar way. Finally, we can also apply this clean-up to CL1 and CR2. Note that this
final clean-up removes from CL1 the points that have the same y-coordinate except
the rightmost one and removes from CR2 the points that have the same y-coordinate
except the leftmost one. This procedure can be accomplished in O(N) time. In what
follows we assume that these sets have been trimmed.

The next step is to determine, for each point in CL2, the set of points in CRI with
which the point can be paired. This set is clearly a contiguous subsequence of the

306 B. CHAZELLE, R. L. DRYSDALE AND D. T. LEE

points M1, M2," ", Mu of CR1 given in ascending x-order. We will therefore precom-
pute the functions l(P), and r(P) such that the set {MI(p), MI(,)+I," , Mr(p)} contains
exactly the points of CR which can be paired with P to form an empty corner rectangle
(Fig. 5). It is easy to precompute the function (and by the same token, r) in linear
time, proceeding as follows: assume that each set CL1, CL2, CR and CR2 has been
sorted by x-coordinates. In a merge-like scan through CL1 and CL2, we compute, for
each point P of CL2, its "counterpart" in CL, i.e., the leftmost point of CLt to the
right of the vertical line passing through P. We perform the same operation with respect
to CL and CR (rotated by 90 degrees), and the conjunction of the two lists thus
obtained precisely provides the desired correspondence between P and Ml(p. We
compute the function r(P) similarly.

CL

CL

M

M

b ol Mr(p(P)

CR z

M

FIG. 5. The points in CR that can be paired with P in CL2.

Once the set {M(p), M(p)+,..., Mr(p)} associated with P is computed, in order
to facilitate searching of a point Mi in the set with which to pair P to form the LECR
we make use of the notion of so-called LL-diagram (Lower-Left-diagram), which is
similar to the notion of Voronoi diagram (see, for example, [10], [11], [15]).

Computing the LL-diagram. The LL-diagram of a set S={M, M2,’", MN},
denoted LL(S), is defined as follows: LL($) is a set of regions
{V(M1), V(M2),..., V(MN)}, where

V(M,)={MeNE*Id(M,M,)>=d(M,M) for all j= 1,2,...,N}

and d (A, B), the d-distance between A and B, measures the area of the corner rectangle
between A and B if B dominates A and is zero otherwise; NE* denotes the region
(-oo, Xmax] X (--00, Ymax] excluding the smallest enclosing rectangle of S, where Xmax
and Ymax are maximum x- and y-coordinates of S respectively, and is the crossed-line
area shown in Fig. 6. Note that if a point M of S is dominated by another, its associated
region V(M) is empty. Thus, we only consider the case where S contains only maxima.
The LL-diagram of S has the following properties (Lemmas 4, 5 and 6).

LEMMA 4. Let S be a set ofN maxima, M1, M_, ., MN. Then LL(S) consists of
a set ofpossibly unbounded polygons which partitions NE*. All the polygons (except one)
are convex, and LL(S) involves only O(N) edges.

Proof. First consider the case where S consists of only two points A(0, v) and
B(u, 0) with u and v positive. The points M(x, y) in NE* farther from A than from
B (with respect to d) satisfy the relation x(v y) <- y(u x). This reduces to y_->0 or
vx-uy <-_ O, which is the area of NE* above the line passing by the diagonal (other

COMPUTING THE LARGEST EMPTY RECTANGLE 307

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

Ymax

cs)

Xmox

FIG. 6. ,Domain of definition of LL-diagrams.

than AB) of the corner rectangle determined by A and B (Fig. 7). In general, consider
the intersection W of the regions associated with Mi in LL(Mk, Mi), k 1, 2,..., N.
Since W is the intersection of unbounded convex polygons, it is itself a possibly
unbounded convex polygon. Also, since the domain of definition, NE*, as defined for
each LL(Mk, Mi), contains the domain of definition for LL(S), the region V(M) is
simply the intersection of W with NE*; it is therefore a possibly unbounded polygon,
which is always convex, except for the polygon which contains the "corner" of NE*.
We can also see that V(M) has an edge on the boundary of NE*. (Note that none
of the regions associated with M in LL(Mk, M) lies strictly inside NE*.) The last
point to make is that since LL(S) is a planar graph with O(N) faces, all of whose
vertices have degree >= 3, it involves O(N) vertices.

A(O,v)

VCA)

V(B)

B(u,O)

FIG. 7. LL-diagram for points A and B.

LEMMA 5. Let M1, M2, , MN occur in this order with ascending x-coordinate and
let L be any line parallel to the x-axis. It is impossible to find two points A and B on L
in NE* with increasing coordinates such thatA and B lie in V(Mi) and V(M), respectively,
with >j (Fig. 8).

308 B. CHAZELLE, R. L. DRYSDALE AND D. T. LEE

FIG. 8. Point A cannot be in V(Mi) and point B in V(Mj).

Proof. Immediate from the definition of LL(Mi, M).
We now proceed with the computation of LL(S) using a standard divide-and-

conquer technique. We sort the points in S in ascending x-coordinates as
M1, ME,’’’, Ms. Recursively compute L1 LL(S1) and L2- LL(S2), where St=
{M, M2,""", Mts/2} and $2= {Mts/j+,... Ms}, and then merge them. We start
at the lower left corner of the corner rectangle determined by Mts/ and Mts/j+
drawing the diagonal AB (Fig. 9a) downwards until we hit an edge of L or L2, at
which point we stitch the two segments. We illustrate the stitching operation in Fig.
9b. Let us call a diagonal of a segment MiMe, the line supporting the diagonal of the
corner rectangle determined by Mi and M (other than MM). Suppose that the line
currently drawn follows the diagonal of MM downwards. When we encounter the
diagonal of MMk, we cut through it and replace it by the diagonal of MMk (Fig. 9b).
By doing so, we recompute the LL-diagram of S locally around the path being thus
drawn. If we iterate on this process i.e., drawing, hitting and stitching, we will produce
a path z, which is obviously monotone with respect to both the x and y axes. This is

"-S
ML.N/

(a)

M.

";-7,,

(b) aMk

FIG. 9. Stitching operation of two LL-diagrams.

COMPUTING THE LARGEST EMPTY RECTANGLE 309

due to the fact that z is made of chunks of diagonal, which all have positive slopes.
To ensure that stitching the two LL-diagrams L1 and L2 takes O(N) time, we do the
following. At all times, we keep track of the face in L and the face in L2 we are
currently in. The stitching operation corresponds to leaving one face of, say L, for
another face of L. At this point, we know the direction to follow, and we must compute
the next hitting edge. To do so, we maintain a pointer p (respectively P2) to go around
the current face of L counterclockwise (respectively L2 clockwise). Since all slopes
are positive, pointers will always be descending; therefore we can move them in a
simple round-robin fashion so as to detect the first intersection with the new drawing
direction without ever backtracking. As usual, we remove all parts of L and L2 which
have been cut and lie to the right and left, respectively, of the path z. We omit the
details and conclude that the entire computation of LL(S) takes O(N log N) time.
Interested readers are referred to, for example, 10], 11], 15] for details of the merge
concept.

LEMMA 6. The LL-diagram ofa set ofNpoints can be computed in O(N log N) time.

Proof. It suffices to show that in the recursive step of the above procedure each
point to the left and to the right, respectively, of z has its farthest neighbor in $1 and
in $2. Assume that this is not the case, and that, for example, a point M to the left of
z has its farthest neighbor in $2. Let us draw a horizontal line through M. This line
will necessarily intersect the path z in exactly one point P. Let P* be a point immediately
to the left of z (Fig. 10). P is, by construction, in the region of a point of S, since we
have already seen that the LL-diagram has been correctly constructed around z locally.
This is a contradiction to Lemma 5, which completes the proof.

FIG. 10. Illustration for the proof of Lemma 6.

With the LL-diagrams in mind let us consider how they can be effectively used
in finding the point of CR to pair with each point in CL. Consider the complete
binary tree T that has M, M2," ", Mu of CR1 for leaves, from left to right. Letting
SL be. the set of sequences of leaves of each subtree of T, we can use the standard
segment-tree technique [2] to rewrite any contiguous subsequences of M, M2, , Mu
as the concatenation of O(log u) sequences in SL (Fig. 11). It is clear that for any
interval [Mi, M] of consecutive leaves such decomposition can be obtained in O(log u)
time by a simple searCh for Mi and M in T. We omit the details (see Bentley and
Wood [2]). The purpose of this decomposition is to compute efficiently the farthest
neighbor in [Mtp), Mrp)] of each point P in CL2. To do so, we precompute the
LL-diagram of each sequence of points in SL so that we may decompose Mp), Mrp)]

310 I. CHAZELLE, R. L. DRYSDALE AND D. T. LEE

M Mj

{Mi,...,Mj} :{A,B,C,D,E} pointer to LL- diogrom

FIG. 11. Decomposition of an interval Mi, M] into subintervals.

into sequences in SL and search for the farthest neighbor of P in each of the sequences.
A similar technique can be found in Gowda et al. [6]. Searching for the farthest
neighbor is, in this case, equivalent to determining in which region of the LL-diagram
P lies. This can be accomplished in logarithmic time, using only linear space with
Kirkpatrick’s planar point location algorithm [8].

To summarize, the preprocessing of the recursive step consists of:
1. Trimming CL1, CL2, CR1 and CR2 in O(N) time and space.
2. Precomputing the functions l, and r in O(N) time snd space.
3. Setting up the tree T for CR1, and computing the LL-diagram of each sequence

of points in SL. SL consists of one u-sequence, two u/2-sequences, ..., 2k

u/2k-sequences, etc. It follows that computing all the LL-diagrams requires
time T(u) 2T(u/2)/ O(u) O(u log u) and space S(u) 2S(u/2)/ O(u)
O(u log u). (See Lemma 6 or [6].)

4. Setting up the preprocessing required by Kirkpatrick’s planar point location
algorithm for each LL-diagram computed, which requires O(k) time and space
for a set of k points.

Consequently, the total cost ofthe preprocessing amounts to O(u log u) time and space.
The computation of the farthest neighbor in (Ml(p)," "’, Mr(p) of each point P

in CL2 is done by performing O(log u) planar point searches, each requiring O(log u)
time. Putting our results together, we conclude that it is possible to find the LECR
with corners in CR1 and CL2 in time E(N) O(N log2 N) and space O(N log N).
From the relations (1) and’(2) we therefore have the following.

LEMMA 7. The largest empty corner rectangle with corner points in CL and CR can
be computed in D(N)- O(N log N) time and O(N log N) space.

THEOREM 1. The largest empty rectangle problem for N points in the plane can be
solved in T(N) O(N log4 N) time and O(N log N) space.

4.3. An improved algorithm for computing LECR. The result ofthe previous section
can still be improved using a less redundant representation. The redundancy comes
partly from the horizontal recursion, since it is likely to entail repeated computations
of the same LL-diagrams. Instead, we will set up a global data structure for the entire
right half, namely the set CR.

Let M1," ’’, M, be the points of CR. We will arrange the points to be the nodes
of a rooted tree TCR that is constructed as follows. The root is an imaginary point
situated entirely above and to the left of CR. First of all, the points with the same
y-coordinates are connected to form chains, ordered in y-coordinate. Then for each
chain we connect the leftmost point to the point in a higher chain that is directly above

COMPUTING THE LARGEST EMPTY RECTANGLE 311

it (Fig. 12). We note that if P is an arbitrary point in CL and Mi is the lowest (rightmost)
point of CR higher than P, the path from Mi to the root of the tree contains the only
points which can be paired with P to form an LECR (Fig. 12).

h(P)

Tree TCRRoot

M

FIG. 12. Construction of the tree TcR.

By analogy with the previous section, we will precompute for each point in CL
the functions and r, which will now point to nodes in TCR. Notice that Mr(p) is simply
the lowest (rightmost) point of CR higher than P, and can be computed in linear time
for each P in CL. Similarly we can compute the "vertical" obstacle h(P)= upper (P),
in CL for each point P in linear time. Next we precompute the function as follows:
consider each point P in descending y-coordinate and 1) if P is in CR, ensure that
all the points and only the points on the path of TCR from the root to P are arranged
consecutively in a stack A, 2) if P is in CL, do a binary search in A in order to find
the highest point below h(P). Note that this point is exactly M(p). Since TCR is a tree,
operation 1 consists simply of updating a stack, which will take a total of O(N) time.
Of course, each point of CL may cause an O(log N) search time. Therefore the total
time complexity of the procedure is O(N log N).

Computing path functions in a free tree. Let T be a free tree with N vertices, each
of degree at most 3. Recall that a free tree is a connected acyclic graph. We wish to
compute "decomposable" functions over tree-paths very efficiently. We consider func-
tions of the form F(v, w), defined for any pair of vertices (v, w) of T. These functions
are assumed to have the following property: there exists an associative operator OP
computable in constant time, such that for any vertex z on the path from v to w, we have

F(v, w)= F(w, v)= OP(F(v, z), F(z, w)).

One trivial example of such a function is the distance between two nodes of the tree.
For the application at hand, (v, w) will be a pair of the form (l(P), r(P)) and F(v, w)
will be the maximum d-distance between P and any point on the chain from MIp) to
Mr(p).

Suppose now that in order to compute F(v, w) we can use a data structure L(v, w)
so that F(v, w) can then be evaluated in O(f(N)) time. We assume that L(v, w)
requires O(t) space and can be computed in O(t log t) time, where is the number
of nodes on the path between v and w. Instead of precomputing all possible structures

312 B. CHAZELLE, R. L. DRYSDALE AND D. T. LEE

L(v, w) for all pairs of nodes (v, w), which would require O(N3) storage, we will
compute only a subset of them R L(vi, wi), which takes only O(N log N) space, and
has the property that the path between any pair of nodes in T is the concatenation of
disjoint paths between O(log N) pairs (v, wi). The availability of R clearly allows us
to evaluate F(v, w) in O(f(N)log N) time, assuming that we can express the path
(v, w) as a sequence in R in O(log N) time.

The construction of R relies on the fact that it is possible in linear time to find a
vertex (the centroid) of an N-vertex tree whose removal from the tree leaves subtrees
with at most N2 nodes [9]. We will compute R recursively. To do so, we will represent
T, as a rooted ternary tree G defined as follows: let C, the centroid of T be the root
of G. For the sake of simplicity we may assume without loss of generality that we have
exactly 3 subtrees, T1, T2, T3, rooted at C. We then proceed to compute their centroids,
C1, C2, Ca, which we insert in G as the sons of the root C. We iterate on this process
for each subtree, labeling the nodes in the following manner. Assume that T has
exactly Ni vertices (N1 + N2 + N3- N-1). The root C is labeled N and the general
rule is that T1 will be labeled recursively with the integers (1,..., N, T2 with
{N + 1,. ., N -t- N2}, and T with {N + N2-k- 1,. ., N- 1}. To be consistent we will
label the root of each subtree with the highest label available.

Our next task is to augment G with new edges, called extra-edges. For each vertex
v of G we, in turn, apply the following procedure to all the vertices which are adjacent
to v in T and are labeled lower than v in G. Let w be such a vertex. Since it clearly
must lie in the subtree of G rooted at v, we link to v every node, including w, on the
path in G from v to w, thus adding the so-called extra-edges. Figure 13a shows the
labeling of the tree and Fig. 13b the ternary tree representation G. The dotted lines in
Fig. 13b indicate the extra-edges that are introduced when the root node (labeled 26)
is considered.

(a)

3 II 12
9 14

4 6 (v)

2

23/ free tree

22 x’19

21

(b)

26 (v) augmented.... ternary tree G

\’,I II I\
15 13 I0 5 4 2

19 18 (w)

FIG. 13. Converting a free tree to an augmented ternary tree.

COMPUTING THE LARGEST EMPTY RECTANGLE 313

Since we can compute centroids in linear time and G clearly has height O(log N),
it is easy to construct the tree augmented with extra-edges in time
Max(O(NlogN),H(N)), where the first term accounts for the time needed for
augmenting the extra-edges, and H(N), the time for constructing G, is given by
H(N)=H(N1)+H(N)+H(N3)+O(N), NI+N2+N3=N-1, and N1, N2,
N/2, i.e., H(N)- O(N log N). The final addition to G is to set pointers from each
edge (u, v) of G to the structure L(u, v).

It is not difficult to evaluate the overall time and space complexities, T(N) and
S(N), respectively, of the preprocessing we have just described. Since an edge in G
from the root to a vertex k levels deeper gives rise to a path in T of length at most
N/2k, the time and space complexities, respectively, for computing all the structures
of the form L(root, x) required by our algorithm is O(N log N) and O(N). (Recall
that the structure L(v, w) is assumed to take O(t) space and O(t log t) time to construct
with being the number of nodes on the path in T from v to w.) Thus,

T(N) T(N) + T(Nu) + T(N3) + O(N log N)

and

S(N) S(NI) + S(N2) q- S(N3) -I- O(N)

with N + N2+ N3 N-1, and N, Nu, N3<= N/2. This gives .rise to the following
complexity bounds for computing the preprocessing structure R: T(N) O(N log- N)and S(N) O(N log N).

We can now show that this preprocessing allows us to evaluate F(u, v) for any
pair (u, v) of nodes in T in time O(f(N) log N). To do so, we walk up the path in
G from u towards .the root, stopping at the first node w with a label exceeding that
of v. We know that v lies in one of the subtrees of w. Note also that the labeling of
O allows us to go down from w to v in time proportional to the length of the path.
At this point we perform the same operations for u and v in turn, so we may describe
the procedure for u only. Let (w, u,..., Uk) (Uk U) be the path in G from w to u.
If this path has extra-edges connecting w to some ui, we note that G must have a set
of consecutive extra-edges wu, wu2,’", wuj between w and u. We collect the last
extra-edges wuj and iterate on this process, restarting at u (Fig. 14). If w does not
have an extra-edge on its path to u, we simply collect the edges WUl and iterate from
ul. Note that this collecting operation takes only O(length of path from w to u)=
O(log N). Finally we compute F(u, v) by evaluating OP(.., F(ui, vi),), where
the (ui, vi) are all the edges collected by the above procedure.

To show the correctness of our method it suffices to notice that the path formed
by the edges collected from u to w, along with the path collected similarly from w to
v, gives an exact partition of the path in T from u to v. There again, the reader can
supply an easy proof of the fact. We conclude as follows.

LEMMA 8. With O(N log N)-space, O(N log2 N)-time preprocessing, it is possible
to evaluate F(u, v) in O(f(N) log N) time for any pair of vertices (u, v) in T.

Note that the idea of decomposing tree-paths into canonical pieces is one aspect
of a general mapping principle between linear lists and trees developed in [4].

Computing the LECR efficiently. A simple application of the previous paragraph
provides an improved algorithm for computing the LECR of the sets S CLU CR.
Clearly T is our tree TcR, the structure L(u, v) is the LL-diagram of the points of CR
on the path between u and v, preprocessed so as to allow for Kirkpatrick’s planar
point location algorithm, the function F(u, v) simply returns the regions in L(u, v)
where a given point P of CL lies; its complexity is therefore f(N) O(log N). Finally,

314 B. CHAZELLE, R. L. DRYSDALE AND D. T. LEE

root

(=

,5’-//-/-/4 collected edges

FIG. 14. Collecting operation of a path from w to u.

the operator OP(M, M’) returns the point (M or M’) that forms the LECR with P.
Note that the only discrepancy comes from the fact that TCR is not necessarily a tree
with degree =< 3. There is an easy fix, however. We simply introduce dummy vertices
to reduce any excessive degree to 3. This adds only O(N) vertices and thus does not
affect the complexity of the algorithm. We are now in a position to compute the LECR
in S. To do so, compute F(MI(p), Mr(p)) for all P in CL, and return the point which
gives the largest area along with its upper right neighbor. We omit the details of this
straightforward transformation. Thus, with Lemma 8 and the above discussion we have
the following.

LEMMA 9. It is possible to compute the LECR determined by a pair ofpoints, each
of which is in one of the sets CL and CR respectively in D(N) O(N log2 N) time and
in O(N log N) space.

Using relation (1) we can state our main result.
THEOREM 2. The largest empty rectangle problem for a set of N points can be

computed in O(N log N) time and O(N log N) space.

5. Conclusion. We have presented an O(N log N)-time and O(N log N) space
algorithm for computing the largest area rectangle which contains none of the N points
in its interior. A simpler version of the algorithm with running time O(N log4 N) and
space O(N log N) has also been given. The algorithms are primarily based on the
divide-and-conquer strategy. We have addressed only the problem of locating a rec-
tangle whose sides are parallel to those of the bounding rectangle of the given set of
points. If the rectangle sought is arbitrarily oriented, the problem becomes much more
difficult.

Naturally one may ask for an arbitrary polygon instead of a rectangle within a
bounded region or generalize the problem to higher dimensions. We remark that if

COMPUTING THE LARGEST EMPTY RECTANGLE 315

the largest empty triangle is sought and the directions of the sides of the triangle have
been predetermined, then the largest empty triangle can be found in O(n log n) time
and O(n) space using a divide-and-conquer techique similar to the one used in 3.

REFERENCES

1] J. L. BENTLEY, Divide-and-conquer algorithmsfor closest pointproblems in multidimensional space, Ph.D.
thesis, Dept. Computer Science, Univ. North Carolina, Chapel Hill, NC, 1976.

[2] J. L. BENTLEY AND D. WOOD, An optimal worst case algorithm for reporting intersections of rectangles,
IEEE Trans. Comput. (1980), pp. 571-577.

[3] J. E. BOYCE, D. P. DOaKIN, R. L. DRYSDALE III AND L. J. GUIBAS, Finding extremal polygons,
Proc. ACM Symposium on Theory of Computing, 1982, pp. 282-289.

[4] B. M. CHAZELLE, Computing on a free tree via complexity-preserving mappings, Proc. 25th IEEE
Symposium on Foundations of Computer Science, 1984, to appear.

[5] D. P. DOBKIN, R. L. DRYSDALE III AND L. J. GUIBAS, Finding smallest polygons, to appear in
Advances of Computing Research, F. P. Preparata, ed., Jai Press.

[6] I. G. GOWDA, O. G. KIRKPATRICK, D. T. LEE AND A. NAAMAD, Dynamic Voronoi diagrams, IEEE
Trans. Inform. Theory, IT-29 (1983), pp. 724-731.

[7] F. K. HWANG, An O(n log n) algorithm for rectilinear minimal spanning trees, J. ACM, 26 (1979), pp.
177-182.

[8] D. G. KIRKPATRICK, Optimal search in planar subdivisions, this Journal, 12 (Feb. 1983), pp. 28-35.
[9] D. E. KNUTH, The Art of Computer Programming, Vol. I: Fundamental Algorithms, Addison-Wesley,

Reading, MA, 1968.
[10] D. T. LEE, Two dimensional Voronoi diagrams in the Lp-metric, J. ACM, 27 (1980), pp. 604-618.
11] D. T. LEE AND R. L. DRYSDALE III, Generalization of Voronoi diagrams in the plane, this Journal,

10 (1981), pp. 73-87.
[12] D. T. LEE AND C. K. WONG, Voronoi diagrams in L-(Lo-)metrics with 2-dimensional storage

applications, this Journal, 9 (1980), pp. 200-211.
[13] A. NAAMAD, W. L. Hsu AND D. T. LEE, On maximum empty rectangle problem, Appl. Disc. Math.,

8 (1984), pp. 267-277.
[14] M. I. SHAMOS, Computational geometry, Ph.D. dissertation, Dept. Computer Sciences, Yale Univ.,

New Haven, CT, 1978.
[15] M. I. SHAMOS AND D. HOLY, Closest-point problem, Proc. 16th IEEE Symposium on Foundations of

Computer Science, 1975, pp. 151-162.

	Computing the Largest Empty Rectangle
	Dartmouth Digital Commons Citation

	tmp.1526300289.pdf.xJkot

