37 research outputs found

    A comparison of popular fertility awareness methods to a DBN model of the woman's monthly cycle

    Get PDF
    Fertility Awareness Methods are effective, safe, and low-cost techniques for identifying the fertile days of a menstrual cycle. In this paper, we compare the effectiveness of predicting the fertile days by a Dynamic Bayesian Network model of the monthly cycle to 11 existing Fertility Awareness Methods. We base our comparison on a real data set of 7,017 cycles collected by 881 women. We demonstrate that the DBN model is more accurate than the best modern Fertility Awareness Methods, based on the observation of mucus, marking reasonably high percentage of days of the cycle as infertile. We argue that the DBN approach offers other advantages, such as predicting the ovulation day and being able to adjust its predictions to each woman's individual cycle

    Learning why things change: The Difference-Based Causality Learner

    Get PDF
    In this paper, we present the Difference-Based Causality Learner (DBCL), an algorithm for learning a class of discrete-time dynamic models that represents all causation across time by means of difference equations driving change in a system. We motivate this representation with real-world mechanical systems and prove DBCL's correctness for learning structure from time series data, an endeavour that is complicated by the existence of latent derivatives that have to be detected. We also prove that, under common assumptions for causal discovery, DBCL will identify the presence or absence of feedback loops, making the model more useful for predicting the effects of manipulating variables when the system is in equilibrium. We argue analytically and show empirically the advantages of DBCL over vector autoregression (VAR) and Granger causality models as well as modified forms of Bayesian and constraintbased structure discovery algorithms. Finally, we show that our algorithm can discover causal directions of alpha rhythms in human brains from EEG data

    Does query-based diagnostics work?

    Get PDF
    Query-based diagnostics (Agosta, Gardos, & Druzdzel, 2008) offers passive, incremental construction of diagnostic models that rest on the interaction between a diagnostician and a computer-based diagnostic system. Effectively, this approach minimizes knowledge engineering, the main bottleneck in practical application of Bayesian networks. While this idea is appealing, it has undergone only limited testing in practice. We describe a series of experiments that subject a prototype implementing passive, incremental model construction to a rigorous practical test. We show that the prototype's diagnostic accuracy reaches reasonable levels after merely tens of cases and continues to increase with the number of cases, comparing favorably to state of the art approaches based on learning

    An empirical comparison of Bayesian network parameter learning algorithms for continuous data streams

    Get PDF
    We compare three approaches to learning numerical parameters of Bayesian networks from continuous data streams: (1) the EM algorithm applied to all data, (2) the EM algorithm applied to data increments, and (3) the online EM algorithm. Our results show that learning from all data at each step, whenever feasible, leads to the highest parameter accuracy and model classification accuracy. When facing computational limitations, incremental learning approaches are a reasonable alternative. Of these, online EM is reasonably fast, and similar to the incremental EM algorithm in terms of accuracy. For small data sets, incremental EM seems to lead to better accuracy. When the data size gets large, online EM tends to be more accurate. Copyright © 2013, Association for the Advancement of Artificial Intelligence. All rights reserved

    Modeling dynamic systems with memory: What is the right time-order?

    Get PDF
    Most practical uses of Dynamic Bayesian Networks (DBNs) involve temporal inuences of the first order, i.e., inuences between neighboring time steps. This choice is a convenient approximation inuenced by the existence of efficient algorithms for first order models and limitations of available tools. We focus on the question whether constructing higher time-order models is worth the effort when the underlying system's memory goes beyond the current state. We present the results of an experiment with a series of DBN models monitoring woman's monthly cycle. We show that higher order models are significantly more accurate. However, we have also observed overfitting and a resulting decrease in accuracy when the time order chosen is too high

    Cardiac health risk stratification system (CHRiSS): A Bayesian-based decision support system for left ventricular assist device (LVAD) therapy

    Get PDF
    This study investigated the use of Bayesian Networks (BNs) for left ventricular assist device (LVAD) therapy; a treatment for end-stage heart failure that has been steadily growing in popularity over the past decade. Despite this growth, the number of LVAD implants performed annually remains a small fraction of the estimated population of patients who might benefit from this treatment. We believe that this demonstrates a need for an accurate stratification tool that can help identify LVAD candidates at the most appropriate point in the course of their disease. We derived BNs to predict mortality at five endpoints utilizing the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) database: containing over 12,000 total enrolled patients from 153 hospital sites, collected since 2006 to the present day, and consisting of approximately 230 pre-implant clinical variables. Synthetic minority oversampling technique (SMOTE) was employed to address the uneven proportion of patients with negative outcomes and to improve the performance of the models. The resulting accuracy and area under the ROC curve (%) for predicted mortality were 30 day: 94.9 and 92.5; 90 day: 84.2 and 73.9; 6 month: 78.2 and 70.6; 1 year: 73.1 and 70.6; and 2 years: 71.4 and 70.8. To foster the translation of these models to clinical practice, they have been incorporated into a web-based application, the Cardiac Health Risk Stratification System (CHRiSS). As clinical experience with LVAD therapy continues to grow, and additional data is collected, we aim to continually update these BN models to improve their accuracy and maintain their relevance. Ongoing work also aims to extend the BN models to predict the risk of adverse events post-LVAD implant as additional factors for consideration in decision making

    An approximation of surprise index as a measure of confidence

    Get PDF
    Probabilistic graphical models, such as Bayesian networks, are intuitive and theoretically sound tools for modeling uncertainty. A major problem with applying Bayesian networks in practice is that it is hard to judge whether a model fits well a case that it is supposed to solve. One way of expressing a possible dissonance between a model and a case is the surprise index, proposed by Habbema, which expresses the degree of surprise by the evidence given the model. While this measure reflects the intuition that the probability of a case should be judged in the context of a model, it is computationally intractable. In this paper, we propose an efficient way of approximating the surprise index

    Medicine in words and numbers: a cross-sectional survey comparing probability assessment scales

    Get PDF
    Contains fulltext : 56355.pdf ( ) (Open Access)Background / In the complex domain of medical decision making, reasoning under uncertainty can benefit from supporting tools. Automated decision support tools often build upon mathematical models, such as Bayesian networks. These networks require probabilities which often have to be assessed by experts in the domain of application. Probability response scales can be used to support the assessment process. We compare assessments obtained with different types of response scale. Methods / General practitioners (GPs) gave assessments on and preferences for three different probability response scales: a numerical scale, a scale with only verbal labels, and a combined verbal-numerical scale we had designed ourselves. Standard analyses of variance were performed. Results / No differences in assessments over the three response scales were found. Preferences for type of scale differed: the less experienced GPs preferred the verbal scale, the most experienced preferred the numerical scale, with the groups in between having a preference for the combined verbal-numerical scale. Conclusion / We conclude that all three response scales are equally suitable for supporting probability assessment. The combined verbal-numerical scale is a good choice for aiding the process, since it offers numerical labels to those who prefer numbers and verbal labels to those who prefer words, and accommodates both more and less experienced professionals.8 p

    On-Line Student Modeling for Coached Problem Solving Using Bayesian Networks

    Full text link
    This paper describes the student modeling component of ANDES, an Intelligent Tutoring System for Newtonian physics. ANDES' student model uses a Bayesian network to do long-term knowledge assessment, plan recognition and prediction of students' actions during problem solving. The network is updated in real time, using an approximate anytime algorithm based on stochastic sampling, as a student solves problems with ANDES.The information in the student model is used by ANDES' Help system to tailor its support when the student reaches impasses in the problem solving process. In this paper, we describe the knowledge structures represented in the student model and discuss the implementation of the Bayesian network assessor. We also present a preliminary evaluation of the time performance of stochastic sampling algorithms to update the network

    An empirical evaluation of costs and benefits of simplifying Bayesian networks by removing weak arcs

    No full text
    We report the results of an empirical evaluation of structural simplification of Bayesian networks by removing weak arcs. We conduct a series of experiments on six networks built from real data sets selected from the UC Irvine Machine Learning Repository. We systematically remove arcs from the weakest to the strongest, relying on four measures of arc strength, and measure the classification accuracy of the resulting simplified models. Our results show that removing up to roughly 20 percent of the weakest arcs in a network has minimal effect on its classification accuracy. At the same time, structural simplification of networks leads to significant reduction of both the amount of memory taken by the clique tree and the amount of computation needed to perform inference
    corecore