20 research outputs found

    Association of Early Interventions With Birth Outcomes and Child Linear Growth in Low-Income and Middle-Income Countries:Bayesian Network Meta-analyses of Randomized Clinical Trials

    Get PDF
    Importance:The first 1000 days of life represent a critical window for child development. Pregnancy, exclusive breastfeeding (EBF) period (0-6 months), and complementary feeding (CF) period (6-24 months) have different growth requirements, so separate considerations for intervention strategies are needed. No synthesis to date has attempted to quantify the associations of interventions under multiple domains of micronutrient and balanced energy protein and food supplements, deworming, maternal education, water sanitation, and hygiene across these 3 life periods with birth and growth outcomes. Objective: To determine the magnitude of association of interventions with birth and growth outcomes based on randomized clinical trials (RCTs) conducted in low-income and middle-income countries (LMICs) using Bayesian network meta-analyses. Data Sources: MEDLINE, Embase, and Cochrane databases were searched from their inception up to August 14, 2018. Study Selection: Included were LMIC-based RCTs of interventions provided to pregnant women, infants (0-6 months), and children (6-24 months). Data Extraction and Synthesis: Two independent reviewers used a standardized data extraction and quality assessment form. Random-effects network meta-analyses were performed for each life period. Effect sizes are reported as odds ratios (ORs) and mean differences (MeanDiffs) for dichotomous and continuous outcomes, with 95% credible intervals (CrIs). This study calculated probabilities of interventions being superior to standard of care by at least a minimal clinically important difference. Main Outcomes and Measures. The study compared ORs on preterm birth and MeanDiffs on birth weight for pregnancy, length for age (LAZ) for EBF, and height for age (HAZ) for CF. Results: Among 302 061 participants in 169 randomized clinical trials, the network meta-analyses found several nutritional interventions that demonstrated greater association with improved birth and growth outcomes compared with standard of care. For instance, compared with standard of care, maternal supplements of multiple micronutrients showed reduced odds for preterm birth (OR, 0.54; 95% CrI, 0.27-0.97) and improved mean birth weight (MeanDiff, 0.08 kg; 95% CrI, 0.00-0.17 kg) but not LAZ during EBF (MeanDiff, −0.02; 95% CrI, −0.18 to 0.14). Supplementing infants and children with multiple micronutrients showed improved LAZ (MeanDiff, 0.20; 95% CrI, 0.03-0.35) and HAZ (MeanDiff, 0.14; 95% CrI, 0.02-0.25). The study found that pregnancy interventions generally had higher probabilities of a minimal clinically importance difference than the interventions for the EBF or CF in the first 1000 days of life. Conclusions and Relevance: These analyses highlight the importance of intervening early for child development, during pregnancy if possible. Results of this study suggest that there is a need to combine interventions from multiple domains and test for their effectiveness as a package

    The role and challenges of cluster randomised trials for global health

    Get PDF
    Evaluating whether an intervention works when trialled in groups of individuals can pose complex challenges for clinical research. Cluster randomised controlled trials involve the random allocation of groups or clusters of individuals to receive an intervention, and they are commonly used in global health research. In this paper, we describe the potential reasons for the increasing popularity of cluster trials in low-income and middle-income countries. We also draw on key areas of global health research for an assessment of common trial planning practices, and we address their methodological shortcomings and pitfalls. Lastly, we discuss alternative approaches for population-level intervention trials that could be useful for research undertaken in low-income and middle-income countries for situations in which the use of cluster randomisation might not be appropriate

    Accelerating clinical evaluation of repurposed combination therapies for COVID-19

    Get PDF
    CITATION: Rayner, C. R. et al. 2020. Accelerating clinical evaluation of repurposed combination therapies for COVID-19. American Journal of Tropical Medicine and Hygiene, doi:10.4269/ajtmh.20-0995.The original publication is available at https://www.ajtmh.orgAs the global COVID-19 pandemic continues, unabated and clinical trials demonstrate limited effective pharmaceutical interventions, there is a pressing need to accelerate treatment evaluations. Among options for accelerated development is the evaluation of drug combinations in the absence of prior monotherapy data. This approach is appealing for a number of reasons. First, combining two or more drugs with related or complementary therapeutic effects permits a multipronged approach addressing the variable pathways of the disease. Second, if an individual component of a combination offers a therapeutic effect, then in the absence of antagonism, a trial of combination therapy should still detect individual efficacy. Third, this strategy is time saving. Rather than taking a stepwise approach to evaluating monotherapies, this strategy begins with testing all relevant therapeutic options. Finally, given the severity of the current pandemic and the absence of treatment options, the likelihood of detecting a treatment effect with combination therapy maintains scientific enthusiasm for evaluating repurposed treatments. Antiviral combination selection can be facilitated by insights regarding SARS-CoV-2 pathophysiology and cell cycle dynamics, supported by infectious disease and clinical pharmacology expert advice. We describe a clinical evaluation strategy using adaptive combination platform trials to rapidly test combination therapies to treat COVID-19.https://www.ajtmh.org/content/journals/10.4269/ajtmh.20-0995Publisher's versio

    Systematic review of basket trials, umbrella trials, and platform trials: a landscape analysis of master protocols

    No full text
    Background: Master protocols, classified as basket trials, umbrella trials, and platform trials, are novel designs that investigate multiple hypotheses through concurrent sub-studies (e.g., multiple treatments or populations or that allow adding/removing arms during the trial), offering enhanced efficiency and a more ethical approach to trial evaluation. Despite the many advantages of these designs, they are infrequently used. Methods: We conducted a landscape analysis of master protocols using a systematic literature search to determine what trials have been conducted and proposed for an overall goal of improving the literacy in this emerging concept. On July 8, 2019, English-language studies were identified from MEDLINE, EMBASE, and CENTRAL databases and hand searches of published reviews and registries. Results: We identified 83 master protocols (49 basket, 18 umbrella, and 16 platform trials). The number of master protocols has increased rapidly over the last five years. Most have been conducted in the US (n = 44/83) and investigated experimental drugs (n = 82/83) in the field of oncology (n = 76/83). The majority of basket trials were exploratory (i.e., phase I/II; n = 47/49) and not randomized (n = 44/49), and more than half (n = 28/48) investigated only a single intervention. The median sample size of basket trials was 205 participants (interquartile range, Q3-Q1 [IQR]: 500–90 = 410), and the median study duration was 22.3 (IQR: 74.1–42.9 = 31.1) months. Similar to basket trials, most umbrella trials were exploratory (n = 16/18), but the use of randomization was more common (n = 8/18). The median sample size of umbrella trials was 346 participants (IQR: 565–252 = 313), and the median study duration was 60.9 (IQR: 81.3–46.9 = 34.4) months. The median number of interventions investigated in umbrella trials was 5 (IQR: 6–4 = 2). The majority of platform trials were randomized (n = 15/16), and phase III investigation (n = 7/15; one did not report information on phase) was more common in platform trials with four of them using seamless II/III design. The median sample size was 892 (IQR: 1835–255 = 1580), and the median study duration was 58.9 (IQR: 101.3–36.9 = 64.4) months. Conclusions: We anticipate that the number of master protocols will continue to increase at a rapid pace over the upcoming decades. More efforts to improve awareness and training are needed to apply these innovative trial design methods to fields outside of oncology.Medicine, Faculty ofNon UBCExperimental Medicine, Division ofMedicine, Department ofPopulation and Public Health (SPPH), School ofReviewedFacult

    Deficiency mutations of α1-antitrypsin differentially affect folding, function and polymerization

    Get PDF
    Misfolding, polymerisation and defective secretion of functional α1-antitrypsin underlies the predisposition to severe liver and lung disease in α1-antitrypsin deficiency. We have identified a novel (Ala336Pro, Baghdad) deficiency variant and characterised it relative to the wild-type (M) and Glu342Lys (Z) alleles. The index case is a homozygous individual of consanguineous parentage, with levels of circulating α1-antitrypsin in the moderate deficiency range, but a biochemical phenotype that could not be classified by standard methods. The majority of the protein was present as functionally inactive polymer, and the remaining monomer was 37% active relative to the wild-type protein. These factors combined indicate a 85-95% functional deficiency, similar to that seen with ZZ homozygotes. Biochemical, biophysical and computational studies further defined the molecular basis of this deficiency. These demonstrated that native Ala336Pro α1-antitrypsin could populate the polymerogenic intermediate – and therefore polymerise – more readily than either wild-type α1-antitrypsin or the Z variant. In contrast, folding was far less impaired in Ala336Pro α1-antitrypsin than in the Z variant. The data are consistent with a disparate contribution by the ‘breach’ region and ‘shutter’ region of strand 5A to folding and to polymerisation mechanisms. Moreover, the findings demonstrate that in these variants, folding efficiency does not correlate directly with the tendency to polymerise in vitro or in vivo. They therefore differentiate generalised misfolding from polymerisation tendencies in missense variants of α1-antitrypsin. Clinically they further support the need to quantify loss-of-function in α1-antitrypsin deficiency to individualise patient care
    corecore