17 research outputs found

    Ultra-sensitive digital quantification of proteins and mRNA in single cells

    No full text
    Simultaneous measurement of proteins and mRNA in single cells enables quantitative understanding and modeling of cellular functions. Here, we present an automated microfluidic system for multi-parameter and ultra-sensitive protein/mRNA measurements in single cells. Our technology improves the sensitivity of digital proximity ligation assay by up to 55-fold, with a detection limit of 2277 proteins per cell and with detection efficiency of as few as 29 protein molecules. Our measurements using this system reveal higher mRNA/protein correlation in single mammalian cells than previous estimates. Furthermore, time-lapse imaging of herpes simplex virus 1 infected epithelial cells enabled by our device shows that expression of ICP4 -a major transcription factor regulating hundreds of viral genes- is only partially correlated with viral protein counts, suggesting that many cells go through abortive infection. These results highlight the importance of high-sensitivity protein/mRNA quantification for understanding fundamental molecular mechanisms in individual cells.ISSN:2041-172

    Proposed model of the signaling events upon SV40 infectious entry.

    No full text
    <p>(A) The various players participating in the integrin-mediated signaling through host SV40 engagement. The respective time intervals during which these signaling events occur are also depicted.</p

    Dynamic Proteomics of Herpes Simplex Virus Infection

    No full text
    The cellular response to viral infection is usually studied at the level of cell populations. Currently, it remains an open question whether and to what extent cell-to-cell variability impacts the course of infection. Here we address this by dynamic proteomics—imaging and tracking 400 yellow fluorescent protein (YFP)-tagged host proteins in individual cells infected by herpes simplex virus 1. By quantifying time-lapse fluorescence imaging, we analyze how cell-to-cell variability impacts gene expression from the viral genome. We identify two proteins, RFX7 and geminin, whose levels at the time of infection correlate with successful initiation of gene expression. These proteins are cell cycle markers, and we find that the position in the cell cycle at the time of infection (along with the cell motility and local cell density) can reasonably predict in which individual cells gene expression from the viral genome will commence. We find that the onset of cell division dramatically impacts the progress of infection, with 70% of dividing cells showing no additional gene expression after mitosis. Last, we identify four host proteins that are specifically modulated in infected cells, of which only one has been previously recognized. SUMO2 and RPAP3 levels are rapidly reduced, while SLTM and YTHDC1 are redistributed to form nuclear foci. These modulations are dependent on the expression of ICP0, as shown by infection with two mutant viruses that lack ICP0. Taken together, our results provide experimental validation for the long-held notion that the success of infection is dependent on the state of the host cell at the time of infection

    Inhibition of RhoA via GRAF1 promotes Ezrin inactivation and SV40 infection.

    No full text
    <p>(A) Constitutively active RhoA leads to increased levels of phosphorylated Ezrin that persist upon SV40 treatment. Inactive RhoA abrogates basal levels of p-ERM. A431 cells were transfected with RhoA-G14V-GFP or RhoA-T19N-GFP before SV40 was applied for 15 min and fixed cells were stained with a p-ERM antibody. (B) Expression of an inactive RhoA mutant form positively correlates with SV40 infection. Large populations of A431 cells were transfected with RhoA-G14V, RhoA-T19N and wild-type RhoA GFP constructs and subjected to SV40. Cells that were both transfected (GFP signal) and infected (T-antigen signal) were scored and compared with the expected number emerging from a random occurrence of the two signals. Positive log2 ratio values represent a positive correlation, demonstrating a stimulation of infection, whereas negative values denote anti-correlation, demonstrating an inhibition of infection (p-value 4.2×10<sup>−4</sup>). (C) Inhibition of GRAF1 function leads to increased levels of p-ERM. siRNA was applied onto A431 cells followed by addition of SV40 for 15 min. Levels of p-ERM were assessed using immunofluorescence in fixed cells. (D) RhoA is inactivated 10 min after SV40 treatment. Inhibition of PI3K and PDK1 with wortmannin or the PDK1 inhibitor, respectively, abolished the SV40-induced reduction in RhoA activity. Cells that had undergone the indicated treatment were subjected to RhoA-GTP immunoprecipitation, which was subsequently detected with a RhoA antibody using immunoblotting. The graph shows the quantification of the RhoA-GTP signal in SV40 exposed cells, as expressed in % reduction compared to the non-treated cells, and normalized against total RhoA and tubulin (quantification based on two different experiments). (E) PDK1 and GRAF1 act both upstream of RhoA to signal to ERM proteins. A431 cells were subjected to the following conditions before being scored for the presence or absence of p-ERM signal using immunofluorescence: transfection with RhoA-WT-GFP, RhoA-G14V-GFP or RhoA-T19N-GFP constucts, incubation with the PDK1 inhibitor for 1.5 h, siRNA treatment against GRAF1, or a combination of RhoA-T19N-GFP expression and the PDK1 inhibitor or GRAF1 siRNA. Acquired confocal images were processed with ImageJ to quantify the number of p-ERM-expressing cells. Inhibition of PDK1 function or silencing of GRAF1 led to partial or no restoration of the fraction of p-ERM-positive RhoA-T19N-expressing cells (asterisks), respectively. Values shown are the average of 2–4 independent experiments ± standard deviation. (F) Representative image used to extract the values shown in (E). The white line outlines manually segmented cells, whereas green and red depict RhoA-T19N-GFP transfected cells and p-ERM-positive cells, respectively. Dapi-stained nuclei are shown in blue.</p
    corecore