4,095 research outputs found

    Quantum reflection of atoms from a solid surface at normal incidence

    Full text link
    We observed quantum reflection of ultracold atoms from the attractive potential of a solid surface. Extremely dilute Bose-Einstein condensates of ^{23}Na, with peak density 10^{11}-10^{12}atoms/cm^3, confined in a weak gravito-magnetic trap were normally incident on a silicon surface. Reflection probabilities of up to 20 % were observed for incident velocities of 1-8 mm/s. The velocity dependence agrees qualitatively with the prediction for quantum reflection from the attractive Casimir-Polder potential. Atoms confined in a harmonic trap divided in half by a solid surface exhibited extended lifetime due to quantum reflection from the surface, implying a reflection probability above 50 %.Comment: To appear in Phys. Rev. Lett. (December 2004)5 pages, 4 figure

    Quantum Clock Synchronization Based on Shared Prior Entanglement

    Get PDF
    We demonstrate that two spatially separated parties (Alice and Bob) can utilize shared prior quantum entanglement, and classical communications, to establish a synchronized pair of atomic clocks. In contrast to classical synchronization schemes, the accuracy of our protocol is independent of Alice or Bob's knowledge of their relative locations or of the properties of the intervening medium.Comment: 4 page

    The Vortex Phase Qubit: Generating Arbitrary, Counter-Rotating, Coherent Superpositions in Bose-Einstein Condensates via Optical Angular Momentum Beams

    Get PDF
    We propose a scheme for generation of arbitrary coherent superposition of vortex states in Bose-Einstein condensates (BEC) using the orbital angular momentum (OAM) states of light. We devise a scheme to generate coherent superpositions of two counter-rotating OAM states of light using known experimental techniques. We show that a specially designed Raman scheme allows transfer of the optical vortex superposition state onto an initially non-rotating BEC. This creates an arbitrary and coherent superposition of a vortex and anti-vortex pair in the BEC. The ideas presented here could be extended to generate entangled vortex states, design memories for the OAM states of light, and perform other quantum information tasks. Applications to inertial sensing are also discussed.Comment: 4 pages, 4 figures, Revtex4, to be submitted to Phys. Rev. Let

    Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber

    Full text link
    Trapping and optically interfacing laser-cooled neutral atoms is an essential requirement for their use in advanced quantum technologies. Here we simultaneously realize both of these tasks with cesium atoms interacting with a multi-color evanescent field surrounding an optical nanofiber. The atoms are localized in a one-dimensional optical lattice about 200 nm above the nanofiber surface and can be efficiently interrogated with a resonant light field sent through the nanofiber. Our technique opens the route towards the direct integration of laser-cooled atomic ensembles within fiber networks, an important prerequisite for large scale quantum communication schemes. Moreover, it is ideally suited to the realization of hybrid quantum systems that combine atoms with, e.g., solid state quantum devices

    Local and Global Distinguishability in Quantum Interferometry

    Get PDF
    A statistical distinguishability based on relative entropy characterises the fitness of quantum states for phase estimation. This criterion is employed in the context of a Mach-Zehnder interferometer and used to interpolate between two regimes, of local and global phase distinguishability. The scaling of distinguishability in these regimes with photon number is explored for various quantum states. It emerges that local distinguishability is dependent on a discrepancy between quantum and classical rotational energy. Our analysis demonstrates that the Heisenberg limit is the true upper limit for local phase sensitivity. Only the `NOON' states share this bound, but other states exhibit a better trade-off when comparing local and global phase regimes.Comment: 4 pages, in submission, minor revision

    Tales from the playing field: black and minority ethnic students' experiences of physical education teacher education

    Get PDF
    This article presents findings from recent research exploring black and minority ethnic (BME) students’ experiences of Physical Education teacher education (PETE) in England (Flintoff, 2008). Despite policy initiatives to increase the ethnic diversity of teacher education cohorts, BME students are under-represented in PETE, making up just 2.94% of the 2007/8 national cohort, the year in which this research was conducted. Drawing on in-depth interviews and questionnaires with 25 BME students in PETE, the study sought to contribute to our limited knowledge and understanding of racial and ethnic difference in PE, and to show how ‘race,’ ethnicity and gender are interwoven in individuals’ embodied, everyday experiences of learning how to teach. In the article, two narratives in the form of fictional stories are used to present the findings. I suggest that narratives can be useful for engaging with the experiences of those previously silenced or ignored within Physical Education (PE); they are also designed to provoke an emotional as well as an intellectual response in the reader. Given that teacher education is a place where we should be engaging students, emotionally and politically, to think deeply about teaching, education and social justice and their place within these, I suggest that such stories of difference might have a useful place within a critical PETE pedagogy

    General linear-optical quantum state generation scheme: Applications to maximally path-entangled states

    Full text link
    We introduce schemes for linear-optical quantum state generation. A quantum state generator is a device that prepares a desired quantum state using product inputs from photon sources, linear-optical networks, and postselection using photon counters. We show that this device can be concisely described in terms of polynomial equations and unitary constraints. We illustrate the power of this language by applying the Grobner-basis technique along with the notion of vacuum extensions to solve the problem of how to construct a quantum state generator analytically for any desired state, and use methods of convex optimization to identify bounds to success probabilities. In particular, we disprove a conjecture concerning the preparation of the maximally path-entangled |n,0)+|0,n) (NOON) state by providing a counterexample using these methods, and we derive a new upper bound on the resources required for NOON-state generation.Comment: 5 pages, 2 figure

    Can brewer-sponsored ‘drink responsibly’ warning message be effective without alcohol policies in Nigeria?

    Get PDF
    Alcohol availability, use and misuse and their related problems are rising in many parts of the African continent and this has been attributed to many factors such as non-existent or ineffective regulatory measures. In contemporary Nigeria, while a culture of intoxication is growing, there are no regulatory measures in the form of alcohol policies to reduce it. What exists is brewer-sponsored self-regulation. This paper therefore, critically analyses this self-imposed 'drink responsibly' warning message, arguing that because responsible drinking messages are strategically designed to serve the interest of alcohol industries, it cannot be effective. The paper further argues that because there are no definitions of standard drinks and where alcohol by volume (ABV) is scarcely inscribed on product labels of alcoholic beverages, such message will remain ineffective. Therefore, it recommends that an urgent step should be taken by the government to formulate and implement comprehensive evidence-based alcohol policies in Nigeria
    • …
    corecore