50 research outputs found

    Pseudo-méningite inaugurale révélatrice d’une chondrocalcinose articulaire

    Get PDF
    Le syndrome de la dent couronnée (SDC) est une étiologie peu connue des cervicalgies aiguës. Il est lié le plus souvent à la chondrocalcinose articulaire (CCA), dont il constitue une des localisations atypiques. L'expression clinique du SDC, à type de cervicalgies fébriles, pose en pratique courante, la problématique d'étiologies diverses dont en particulier les infections  susceptibles d'égarer le diagnostic. Nous rapportons un cas de SDC révélé par un tableau de pseudo-méningite

    A geospatial database of drought occurrence in inland valleys in Mali, Burkina Faso and Nigeria

    Get PDF
    The data described in this article are related to drought occurrence in inland valleys and farmers adaptation strategies. The data were collected in 300 inland valleys distributed in 14 regions of West Africa. The data were collected in two phases. In the first phase, 300 inland valleys were identified in 14 regions and their locations were determined with handheld GPS devices. Questionnaires and informal interviews were administered to inland valleys users to collect data on physical and socio-economic characteristics, hydrology, farmers experience with drought affecting rice production in inland valleys and adaptation strategies. In the second phase, the locations of the inland valleys were imported in a GIS environment and were used to extract additional parameters on soil characteristics and water demand from the Shuttle Radar Topography Mission (SRTM), Africa Soil Information Service (africasoils.net) and POWER database (http://power.larc.nasa.gov). In total, the dataset contains 41 variables divided into seven themes: farmers' experience with drought, adaptive management of rice farmers to drought, physical characteristics, hydrology, management practices, socio-economic characteristics and weather data of inland valleys

    Efficiency of an intervention package for arterial hypertension comprising telemanagement in a Cameroonian rural setting: The TELEMED-CAM study

    Get PDF
    Introduction: Sub-Saharan Africa has a disproportionate burden of disease and an extreme shortage of health workforce. Therefore, adequate care for emerging chronic diseases can be very challenging. We implemented and evaluated the effectiveness of an intervention package comprising telecare as a mean for improving the outcomes of care for hypertension in Rural Sub-Saharan Africa. Methods: The study involved a telemedicine center based at the Yaounde General Hospital (5 cardiologists) in the Capital city of Cameroon, and 30 remote rural health centers within the vicinity of Yaoundé (20 centers (103 patients) in the usual care group, and 10 centers (165 patients) in the intervention groups). The total duration of the intervention was 24 weeks. Results: Participants in the intervention group had higher baseline systolic (SBP) and diastolic (DBP) blood pressure, and included fewer individuals with diabetes than those in the usual care group (all p<0.01). Otherwise, the baseline profile was mostly similar between the two groups. During follow-up, more participants in the intervention groups achieved optimal BP control, driven primarily by greater improvement of BP control among High risk participants (hypertension stage III) in the intervention group. Conclusion: An intervention package comprising tele-support to general practitioners and nurses is effective in improving the management and outcome of care for hypertension in rural underserved populations. This can potentially help in addressing the shortage of trained health workforce for chronic disease management in some settings. However context-specific approaches and cost-effectiveness data are needed to improve the application of telemedicine for chronic disease management in resource-limited settings.Key words: Hypertension, control, telemedicine, Cameroon, sub-saharan Afric

    Climate smart rice innovations to reduce the impact of climate change on the livelihood of value chain actors

    Get PDF
    Introduction Rice is a major source of nutrients, largely contributing to the food and nutrition security for millions of people in Africa although most countries still rely on huge imports to meet local demand. Extreme temperatures, drought, flooding, and high salinity are climate change related stresses that negatively affect rice yield and grain quality. Thus, tackling these constraints is a critical action to increasing rice self sufficiency in Cameroon and Africa in general. Methods The Africa Rice Center in partnership with the National Agricultural Research and Extension Services of its 28 member States operating within the framework of the Africa-wide Taskforces has developed, tested, validated, and are deploying breeding, agronomic and post-harvest approaches to mitigate the negative impacts of climate change on rice yield and quality in Africa. Results Breeding approaches have led to the development of drought, cold, submergence, stagnation flood, salinity, and anaerobic germination tolerant varieties that are also resistant or tolerant to biotic stresses. These have demonstrated better yields and grain quality under stressed conditions compared to counterparts lacking those specific traits. The system of rice intensification and alternate wetting and drying, mid-season drainage, smart-valleys approach for inland development, solar-powered irrigation system, no-till and rice straw mulching are agronomic approaches developed and these approaches have demonstrated significant increase in yield and grain quality compared to alternative approached under climate change stress conditions. Post-harvest approaches have focused on reducing grain breakages, chalkiness, mycotoxin contamination, insecticide and fungicide use, deforestation and value addition to broken rice and rice milling byproducts using environmentally friendly methods. Post-harvest innovations here include using improved rice parboiling fueled by rice husk, solar-powered hermetic storage systems, processing of fine broken rice into flour for porridges and bakery products and use of rice husk fan-assisted stoves for household cooking and the cottage processing industry. Conclusions and recommendations Although climate change is a serious threat to rice production affecting both yield and quality, African governments will have to implement policy measures that enhance the scaling and adoption of climate smart rice innovation developed by AfricaRice to mitigate the impact of climate change if they aspire to reduce rice imports

    Impact of urban agriculture on malaria vectors in Accra, Ghana

    Get PDF
    To investigate the impact of urban agriculture on malaria transmission risk in urban Accra larval and adult stage mosquito surveys, were performed. Local transmission was implicated as Anopheles spp. were found breeding and infected Anopheles mosquitoes were found resting in houses in the study sites. The predominant Anopheles species was Anopheles gambiae s.s.. The relative proportion of molecular forms within a subset of specimens was 86% S-form and 14% M-form. Anopheles spp. and Culex quinquefasciatus outdoor biting rates were respectively three and four times higher in areas around agricultural sites (UA) than in areas far from agriculture (U). The annual Entomological Inoculation Rate (EIR), the number of infectious bites received per individual per year, was 19.2 and 6.6 in UA and U sites, respectively. Breeding sites were highly transitory in nature, which poses a challenge for larval control in this setting. The data also suggest that the epidemiological importance of urban agricultural areas may be the provision of resting sites for adults rather than an increased number of larval habitats. Host-seeking activity peaked between 2–3 am, indicating that insecticide-treated bednets should be an effective control method

    Seroprevalence of malaria in inhabitants of the urban zone of Antananarivo, Madagascar

    Get PDF
    BACKGROUND: Antananarivo, the capital of Madagascar, is located at an altitude of over 1,200 m. The environment at this altitude is not particularly favourable to malaria transmission, but malaria nonetheless remains a major public health problem. The aim of this study was to evaluate exposure to malaria in the urban population of Antananarivo, by measuring the specific seroprevalence of Plasmodium falciparum. METHODS: Serological studies specific for P. falciparum were carried out with an indirect fluorescent antibody test (IFAT). In a representative population of Antananarivo, 1,059 healthy volunteers were interviewed and serum samples were taken. RESULTS: The seroprevalence of IgG+IgA+IgM was 56.1% and that of IgM was 5.9%. The major risk factor associated with a positive IgG+IgA+IgM IFAT was travel outside Antananarivo, whether in the central highlands or on the coast. The abundance of rice fields in certain urban districts was not associated with a higher seroprevalence. CONCLUSION: Malaria transmission levels are low in Antananarivo, but seroprevalence is high. Humans come into contact with the parasite primarily when travelling outside the city. Further studies are required to identify indigenous risk factors and intra-city variations more clearly

    A simple method for defining malaria seasonality

    Get PDF
    BACKGROUND: There is currently no standard way of defining malaria seasonality, resulting in a wide range of definitions reported in the literature. Malaria cases show seasonal peaks in most endemic settings, and the choice and timing for optimal malaria control may vary by seasonality. A simple approach is presented to describe the seasonality of malaria, to aid localized policymaking and targeting of interventions. METHODS: A series of systematic literature reviews were undertaken to identify studies reporting on monthly data for full calendar years on clinical malaria, hospital admission with malaria and entomological inoculation rates (EIR). Sites were defined as having 'marked seasonality' if 75% or more of all episodes occurred in six or less months of the year. A 'concentrated period of malaria' was defined as the six consecutive months with the highest cumulative proportion of cases. A sensitivity analysis was performed based on a variety of cut-offs. RESULTS: Monthly data for full calendar years on clinical malaria, all hospital admissions with malaria, and entomological inoculation rates were available for 13, 18, and 11 sites respectively. Most sites showed year-round transmission with seasonal peaks for both clinical malaria and hospital admissions with malaria, with a few sites fitting the definition of 'marked seasonality'. For these sites, consistent results were observed when more than one outcome or more than one calendar year was available from the same site. The use of monthly EIR data was found to be of limited value when looking at seasonal variations of malaria transmission, particularly at low and medium intensity levels. CONCLUSION: The proposed definition discriminated well between studies with 'marked seasonality' and those with less seasonality. However, a poor fit was observed in sites with two seasonal peaks. Further work is needed to explore the applicability of this definition on a wide-scale, using routine health information system data where possible, to aid appropriate targeting of interventions

    The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the <it>An. gambiae </it>complex. <it>Anopheles gambiae </it>is one of four DVS within the <it>An. gambiae </it>complex, the others being <it>An. arabiensis </it>and the coastal <it>An. merus </it>and <it>An. melas</it>. There are a further three, highly anthropophilic DVS in Africa, <it>An. funestus</it>, <it>An. moucheti </it>and <it>An. nili</it>. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed.</p> <p>Results</p> <p>A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method.</p> <p>Conclusions</p> <p>The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: <it>Anopheles </it>(<it>Cellia</it>) <it>arabiensis</it>, <it>An. </it>(<it>Cel.</it>) <it>funestus*</it>, <it>An. </it>(<it>Cel.</it>) <it>gambiae</it>, <it>An. </it>(<it>Cel.</it>) <it>melas</it>, <it>An. </it>(<it>Cel.</it>) <it>merus</it>, <it>An. </it>(<it>Cel.</it>) <it>moucheti </it>and <it>An. </it>(<it>Cel.</it>) <it>nili*</it>, and in the European and Middle Eastern Region: <it>An. </it>(<it>Anopheles</it>) <it>atroparvus</it>, <it>An. </it>(<it>Ano.</it>) <it>labranchiae</it>, <it>An. </it>(<it>Ano.</it>) <it>messeae</it>, <it>An. </it>(<it>Ano.</it>) <it>sacharovi</it>, <it>An. </it>(<it>Cel.</it>) <it>sergentii </it>and <it>An. </it>(<it>Cel.</it>) <it>superpictus*</it>. These maps are presented alongside a bionomics summary for each species relevant to its control.</p

    Malaria in Africa: Vector Species' Niche Models and Relative Risk Maps

    Get PDF
    A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km). Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes). For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis) these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The “additive” model assumes no interaction; the “minimax” model assumes maximum relative risk due to any vector in a cell; and the “competitive exclusion” model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease
    corecore