10 research outputs found

    A matter of time: improvement of visual temporal processing during training-induced restoration of light detection performance

    Get PDF
    The issue of how basic sensory and temporal processing are related is still unresolved. We studied temporal processing, as assessed by simple visual reaction times (AT) and double-pulse resolution (DPR), in patients with partial vision loss after visual pathway lesions and investigated whether vision restoration training (VRT), a training program designed to improve light detection performance, would also affect temporal processing. Perimetric and campimetric visual field tests as well as maps of DPR thresholds and RI were acquired before and after a 3 months training period with VRT. Patient performance was compared to that of age matched healthy subjects. Intact visual field size increased during training. Averaged across the entire visual field, DPR remained constant while RI improved slightly. However, in transition zones between the blind and intact areas (areas of residual vision) where patients had shown between 20 and 80% of stimulus detection probability in pre-training visual field tests, both DPR and RI improved markedly. The magnitude of improvement depended on the defect depth (or degree of intactness) of the respective region at baseline. Inter-individual training outcome variability was very high, with some patients showing little change and others showing performance approaching that of healthy controls. Training-induced improvement of light detection in patients with visual field loss thus generalized to dynamic visual functions. The findings suggest that similar neural mechanisms may underlie the impairment and subsequent training-induced functional recovery of both light detection and temporal processing

    A matter of time: Improvement of visual temporal processing during training-induced restoration of light detection performance

    No full text
    The issue of how basic sensory and temporal processing are related is still unresolved. We studied temporal processing, as assessed by simple visual reaction times (RT) and double-pulse resolution (DPR), in patients with partial vision loss after visual pathway lesions and investigated whether Vision Restoration Training (VRT), a training program designed to improve light detection performance, would also affect temporal processing. Perimetric and campimetric visual field tests as well as maps of DPR thresholds and RT were acquired before and after a three months training period with VRT. Patient performance was compared to that of age-matched healthy subjects. Intact visual field size increased during training. Averaged across the entire visual field, DPR remained constant while RT improved slightly. However, in transition zones between the blind and intact areas (areas of residual vision) where patients had shown between 20% and 80% of stimulus detection probability in pre-training visual field tests, both DPR and RT improved markedly. The magnitude of improvement depended on the defect depth (or degree of intactness) of the respective region at baseline. Inter-individual training outcome variability was very high, with some patients showing little change and others showing performance approaching that of healthy controls. Training-induced improvement of light detection in patients with visual field loss thus generalized to dynamic visual functions. The findings suggest that similar neural mechanisms may underlie the impairment and subsequent training-induced functional recovery of both light detection and temporal processing

    Cueing Attention by Relative Motion in the Periphery of the Visual Field

    No full text
    Sudden changes of visual stimulation attract attention. The observer's body motion generates retinal-flow field patterns containing information about his/her own speed and trajectory and relative motion of other objects. We investigated the effectiveness of relative motion as an attentional cue and compared it with conventional cueing by appearance of a frame in the far periphery of the visual field. In a group of ten subjects, contrast thresholds for the perception of static Gabor grating orientation [four alternative non-forced-choice (4ANFC)] task were determined at 20 degrees, 30 degrees, 40 degrees, and 60 degrees eccentricity. Subsequently, near-threshold discrimination performance of Gabor pattern orientation without versus with a ring-shaped cue was measured at the same positions. The same Gabor patterns were then presented embedded in a random-dot flow field, and uncued discrimination performance was compared with performance after presentation of a relative-motion cue (RMC), ie a small random-dot field with motion in the opposite direction of the flow field. Both the conventional ring cue and the RMC induced significantly increased discrimination performance at all test locations. With the parameters chosen for this study, the RMC was slightly less effective than the conventional cue, but its effects were somewhat more pronounced in the far periphery of the visual field. Thus, relative motion is a powerful cue to attract attention to peripheral visual objects and improves performance as effectively as a conventional ring cue. The findings have practical relevance for everyday life, in particular for tasks like driving and navigation
    corecore