651 research outputs found

    Non-linear modeling of active biohybrid materials

    Get PDF
    Recent advances in engineered muscle tissue attached to a synthetic substrate motivates the development of appropriate constitutive and numerical models. Applications of active materials can be expanded by using robust, non-mammalian muscle cells, such as those of Manduca sexta. In this study, we propose a model to assist in the analysis of biohybrid constructs by generalizing a recently proposed constitutive law for Manduca muscle tissue. The continuum model accounts (i) for the stimulation of muscle fibers by introducing multiple stress-free reference configurations for the active and passive states and (ii) for the hysteretic response by specifying a pseudo-elastic energy function. A simple example representing uniaxial loading-unloading is used to validate and verify the characteristics of the model. Then, based on experimental data of muscular thin films, a more complex case shows the qualitative potential of Manduca muscle tissue in active biohybrid constructs

    Strain controlled biaxial stretch: An experimental characterization of natural rubber

    Get PDF
    In this paper we provide new experimental data showing the response of 40A natural rubber in uniaxial, pure shear and biaxial tension. Real-time biaxial strain control allows for independent and automatic variation of the velocity of extension and retraction of each actuator to maintain the pre-selected deformation rate within the gage area of the specimen. The remaining part of the paper focuses on the Valanis-Landel hypothesis that is used to verify and validate the consistency of the data. We use a three term Ogden model to derive stress-stretch relations to validate the experimental data. The material model parameters are determined using the primary loading path in uniaxial and equibiaxial tension. Excellent agreement is found when the model is used to predict the response in biaxial tension for different maximum in-plane stretches. The application of the Valanis-Landel hypothesis also results in excellent agreement with the theoretical prediction

    The effect of deformation dependent permittivity on the elastic response of a finitely deformed dielectric tube

    Get PDF
    In this paper, the influence of a radial electric field generated by compliant electrodes on the curved surfaces of a tube of dielectric electroelastic material subject to radially symmetric finite deformations is analyzed within the framework of the general theory of nonlinear electroelasticity. The analysis is illustrated for two constitutive equations based on the neo-Hookean and Gent elasticity models supplemented by an electrostatic energy term with a deformation dependent permittivity
    • …
    corecore