83 research outputs found

    Dynamics of Social Balance on Networks

    Full text link
    We study the evolution of social networks that contain both friendly and unfriendly pairwise links between individual nodes. The network is endowed with dynamics in which the sense of a link in an imbalanced triad--a triangular loop with 1 or 3 unfriendly links--is reversed to make the triad balanced. With this dynamics, an infinite network undergoes a dynamic phase transition from a steady state to "paradise"--all links are friendly--as the propensity p for friendly links in an update event passes through 1/2. A finite network always falls into a socially-balanced absorbing state where no imbalanced triads remain. If the additional constraint that the number of imbalanced triads in the network does not increase in an update is imposed, then the network quickly reaches a balanced final state.Comment: 10 pages, 7 figures, 2-column revtex4 forma

    Avalanches in complex spin networks

    Full text link
    We investigate the magnetization reversal processes on classes of complex spin networks with antiferromagnetic interaction along the network links. With slow field ramping the hysteresis loop and avalanches of spin flips occur due to topological inhomogeneity of the network, even without any disorder of the magnetic interaction [B. Tadic, et al., Phys. Rev. Lett. 94 (2005) 137204]. Here we study in detail properties of the magnetization avalanches, hysteresis curves and density of domain walls and show how they can be related to the structural inhomogeneity of the network. The probability distribution of the avalanche size, N_s(s), displays the power-law behaviour for small s, i.e. N_s(s)\propto s^{-\alpha}. For the scale-free networks, grown with preferential attachment, \alpha increases with the connectivity parameter M from 1.38 for M=1 (trees) to 1.52 for M=25. For the exponential networks, \alpha is close to 1.0 in the whole range of M.Comment: 16 pages, 10 figures in 29 eps file

    Detecting groups of similar components in complex networks

    Full text link
    We study how to detect groups in a complex network each of which consists of component nodes sharing a similar connection pattern. Based on the mixture models and the exploratory analysis set up by Newman and Leicht (Newman and Leicht 2007 {\it Proc. Natl. Acad. Sci. USA} {\bf 104} 9564), we develop an algorithm that is applicable to a network with any degree distribution. The partition of a network suggested by this algorithm also applies to its complementary network. In general, groups of similar components are not necessarily identical with the communities in a community network; thus partitioning a network into groups of similar components provides additional information of the network structure. The proposed algorithm can also be used for community detection when the groups and the communities overlap. By introducing a tunable parameter that controls the involved effects of the heterogeneity, we can also investigate conveniently how the group structure can be coupled with the heterogeneity characteristics. In particular, an interesting example shows a group partition can evolve into a community partition in some situations when the involved heterogeneity effects are tuned. The extension of this algorithm to weighted networks is discussed as well.Comment: 14 pages, 10 figures, latex, more discussions added, typos cleare

    The impact of social networks on knowledge transfer in long-term care facilities: Protocol for a study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Social networks are theorized as significant influences in the innovation adoption and behavior change processes. Our understanding of how social networks operate within healthcare settings is limited. As a result, our ability to design optimal interventions that employ social networks as a method of fostering planned behavior change is also limited. Through this proposed project, we expect to contribute new knowledge about factors influencing uptake of knowledge translation interventions.</p> <p>Objectives</p> <p>Our specific aims include: To collect social network data among staff in two long-term care (LTC) facilities; to characterize social networks in these units; and to describe how social networks influence uptake and use of feedback reports.</p> <p>Methods and design</p> <p>In this prospective study, we will collect data on social networks in nursing units in two LTC facilities, and use social network analysis techniques to characterize and describe the networks. These data will be combined with data from a funded project to explore the impact of social networks on uptake and use of feedback reports. In this parent study, feedback reports using standardized resident assessment data are distributed on a monthly basis. Surveys are administered to assess report uptake. In the proposed project, we will collect data on social networks, analyzing the data using graphical and quantitative techniques. We will combine the social network data with survey data to assess the influence of social networks on uptake of feedback reports.</p> <p>Discussion</p> <p>This study will contribute to understanding mechanisms for knowledge sharing among staff on units to permit more efficient and effective intervention design. A growing number of studies in the social network literature suggest that social networks can be studied not only as influences on knowledge translation, but also as possible mechanisms for fostering knowledge translation. This study will contribute to building theory to design such interventions.</p

    Friends and Foes: The Dynamics of Dual Social Structures

    Get PDF
    This paper investigates the evolutionary dynamics of a dual social structure encompassing collaboration and conflict among corporate actors. We apply and advance structural balance theory to examine the formation of balanced and unbalanced dyadic and triadic structures, and to explore how these dynamics aggregate to shape the emergence of a global network. Our findings are threefold. First, we find that existing collaborative or conflictual relationships between two companies engender future relationships of the same type, but crowd out relationships of the different type. This results in (a) an increased likelihood of the formation of balanced (uniplex) relationships that combine multiple ties of either collaboration or conflict, and (b) a reduced likelihood of the formation of unbalanced (multiplex) relationships that combine collaboration and conflict between the same two firms. Second, we find that network formation is driven not by a pull toward balanced triads, but rather by a pull away from unbalanced triads. Third, we find that the observed micro-level dynamics of dyads and triads affect the structural segregation of the global network into two separate collaborative and conflictual segments of firms. Our empirical analyses used data on strategic partnerships and patent infringement and antitrust lawsuits in biotechnology and pharmaceuticals from 1996 to 2006
    corecore