37 research outputs found
Novel Ground-State Crystals with Controlled Vacancy Concentrations: From Kagom\'{e} to Honeycomb to Stripes
We introduce a one-parameter family, , of pair potential
functions with a single relative energy minimum that stabilize a range of
vacancy-riddled crystals as ground states. The "quintic potential" is a
short-ranged, nonnegative pair potential with a single local minimum of height
at unit distance and vanishes cubically at a distance of \rt. We have
developed this potential to produce ground states with the symmetry of the
triangular lattice while favoring the presence of vacancies. After an
exhaustive search using various optimization and simulation methods, we believe
that we have determined the ground states for all pressures, densities, and . For specific areas below 3\rt/2, the ground states of the
"quintic potential" include high-density and low-density triangular lattices,
kagom\'{e} and honeycomb crystals, and stripes. We find that these ground
states are mechanically stable but are difficult to self-assemble in computer
simulations without defects. For specific areas above 3\rt/2, these systems
have a ground-state phase diagram that corresponds to hard disks with radius
\rt. For the special case of H=0, a broad range of ground states is
available. Analysis of this case suggests that among many ground states, a
high-density triangular lattice, low-density triangular lattice, and striped
phases have the highest entropy for certain densities. The simplicity of this
potential makes it an attractive candidate for experimental realization with
application to the development of novel colloidal crystals or photonic
materials.Comment: 25 pages, 11 figure
On the Influence of Eccentricities on Flux Linkages of Permanent Magnet Synchronous Machines
The noise behavior of electrical machines is influenced by tolerances. Eccentricities in particular lead to poorer noise behavior. However, the measurement of NVH quantities is usually very complex. Therefore, it is of interest to be able to detect such tolerances also by other measurands. In this paper, the influence of eccentricities on the flux linkages is investigated. For this purpose, detailed investigations were carried out using FEA. In a further step, these are compared with the results obtained from a test rig measurement. Prior to this, a methodology is presented with which the angle-dependent flux linkages can be determined. It is shown that eccentricities cause only slight changes in the harmonic components of the flux linkages. Due to the symmetry properties of the investigated machine, the changes in the flux linkage caused by the different air gap lengths cancel each other out. This could also be confirmed in the experiment
Determination and emulation of motor-like flux conditions for loss characterization by means of a single tooth geometry
High quantities and a demand on low costs in automotive drives result in new production methods of electrical machines. Besides, the electric drive train efficiency is improved to offer long ranges. Referring to this relationship the loss models of electrical machines are improved more and more. Focusing on iron losses, remarkable influences on the loss characteristics are attributed to the manufacturing processes. In this publication, a new approach of measuring the losses of a single stator tooth of an electrical machine considering motor-like flux conditions is introduced. Derivation of motor-like flux conditions is described, transfer to the test bench is defined and measurements are shown - concluding with a comparison of simulation and measurement as well as the identified tooth losses of the investigated machine. This gives the possibility to improve iron loss models in case of additional losses due to manufacturing influences
