329 research outputs found
The Problem with the Linpack Benchmark Matrix Generator
We characterize the matrix sizes for which the Linpack Benchmark matrix
generator constructs a matrix with identical columns
Squeezing the most out of eigenvalue solvers on high-performance computers
AbstractThis paper describes modifications to many of the standard algorithms used in computing eigenvalues and eigenvectors of matrices. These modifications can dramatically increase the performance of the underlying software on high-performance computers without resorting to assembler language, without significantly influencing the floating-point operation count, and without affecting the roundoff-error properties of the algorithms. The techniques are applied to a wide variety of algorithms and are beneficial in various architectural settings
Developing numerical libraries in Java
The rapid and widespread adoption of Java has created a demand for reliable
and reusable mathematical software components to support the growing number of
compute-intensive applications now under development, particularly in science
and engineering. In this paper we address practical issues of the Java language
and environment which have an effect on numerical library design and
development. Benchmarks which illustrate the current levels of performance of
key numerical kernels on a variety of Java platforms are presented. Finally, a
strategy for the development of a fundamental numerical toolkit for Java is
proposed and its current status is described.Comment: 11 pages. Revised version of paper presented to the 1998 ACM
Conference on Java for High Performance Network Computing. To appear in
Concurrency: Practice and Experienc
- …