
Squeezing the Most out of Eigenvalue
Solvers on High-Performance Computers

Jack J. Dongarra*

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, Illinois 60439

Linda Kaufman

AT G T Bell Laboratories
Murray Hill, New Jersey 07974

and

Sven Hammarling

Numerical Algorithms Group Ltd.
NAG Central Office, Mayfield House
256 Banbuy Road, Oxford OX2 7DE, England

Submitted by J. Alan George

ABSTRACT

This paper describes modifications to many of the standard algorithms used in
computing eigenvalues and eigenvectors of matrices. These modifications can dramati-
cally increase the performance of the underlying software on high-performance
computers without resorting to assembler language, without significantly influencing
the floating-point operation count, and without affecting the roundoff-error properties
of the algorithms. The techniques are applied to a wide variety of algorithms and are
beneficial in various architectural settings.

INTRODUCTION

On high-performance vector computers like the CRAY-1, CRAY X-MP, Fujitsu
VP, Hitachi S-810, and Amdahl 1200, there are three basic performance
levels- scalar, vector, and supervector. For example, on the CRAY-1 [5,7, lo],

*Work supported in part by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U.S. Department of Energy, under Contract W-31-109Eng.38.

LINEAR ALGEBRA AND ITS APPLICATIONS 77:113-136 (1986)

113
00243795/86/$0.00

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81180184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

114 JACK J. DONGARRA ET AL.

these levels produce the following execution rates:

Rate of execution
Performance level (MFLOPS)~

Scalp o-4
Vector 4-50
Super-vector 50-160

Scalar performance is obtained when no advantage is taken of the special
features of the machine architecture. Vector performance is obtained by using
the vector instructions to eliminate loop overhead and to take full advantage
of the pipelined functional units. Supervector performance is obtained by
using vector registers to reduce the number of memory references and thus
avoid letting the paths to and from memory become a bottleneck.

Typically, programs written in FORTRAN run at scalar or vector speeds, so
that one must resort to assembler language (or assembler-language kernels) to
improve performance. But in [2], Dongarra and Eisenstat describe a tech-
nique for attaining supervector speeds from FORTRAN for certain algorithms in
numerical linear algebra. They notice that many algorithms had the basic
form

ALGORITHM A.

For i = 1 to m
y + aixi + y

End

where CY~ is a scalar and xi and y are vectors. Unfortunately, when this
algorithm is implemented in a straightforward way, the CRAY, Fujitsu, and
Hitachi FORTRAN compliers do not recognize that it is the “same y ” acted
upon every time, and issue a store vector y and a load vector y command
between each vector additions. Thus the path to and from memory becomes
the bottleneck. The compliers generate vector code of the general form

Load vector Y

Load scalar ai
Load vector X(I)

Multiply scalar ai times vector X(I)
Add result to vector Y

Store result in Y

’ ~IFLOPS is an actonym for dion Fwating-point operations (additions or multiplications) per

second.

SQUEEZING THE MOST OUT OF EIGENVALUE SOLVERS 115

This gives 2 vector operations to 3 vector memory references. Moreover
because of the concept called “chaining” on the CRAY, Fujitsu and Hitachi,
the time for the vector multiply and add is practically insignificant. In most
circumstances these may be initiated soon after the loading of the vector X(I)
has begun, and for vectors of significant length the load, multiply, and add
may be thought of as practically simultaneous operations.

Dongarra and Eisenstat showed that if one unrolled the loop several
times’, the number of memory references could be reduced and execution
times often decreased by a factor of 2 or 3. For example unrolling Algorithm
A to a depth of two gives:

ALGORITHM A.2.

For i = 2 to m in steps of 2
y+CYi_iXi_i+(YiXi+Y

End
if (m is odd) y + a,,~, + y

The compliers generate vector code of the general form

Load vector Y

Load scalar ai _ ,
Load vector X(I - 1)

Multiply scalar ai 1 times vector x(1 - 1)
Add result to vector Y
Load scalar cyi
Load vector X(I)

Multiply scalar cq times vector x(I)
Add result to vector Y

Store result in Y

This gives 4 vector operations to 4 vector memory references. The larger the
ratio of vector operations to vector memory references becomes, the better
the performance of the program segment. This is the result of vector memory
operations, i.e. loads and stores, costing as much as other vector operations.
When the loop is unrolled to a depth of 8 there are 16 vector operations to 10
vector memory references. Dongarra and Eisenstat incorporated this idea into
two “kemal” subroutines: SMXPY, which added a matrix times a vector to

‘The loops have been unrolled to different depths on different machines, depending on the

effect; on the CRAY the depth is 16, and on the Fujitsu and Hitachi the depth is 8.

116 JACK J. DONGARRA ET AL.

another vector (Ax + y), and SXMPY, which added a vector times a matrix to
another vector (xrA + yr). They showed that several linear system solvers
could be rewritten using these kernel subroutines.

In this paper we try to apply the same concept to algorithms used in
solving the eigenvalue problem. Normally these problems are solved in several
steps:

(1) Reduce the problem to a simpler problem (e.g., a tridiagonal matrix if
the matrix was symmetric),

(2) Solve the eigenproblem for the simpler problem,
(3) If eigenvectors are requested, transform the eigenvectors of the sim-

plified problem to those of the original problem.

For symmetric problems, step (2) usually has the fewest floating-point oper-
ations, while for nonsymmetric matrices step (2) has the most floating-point
operations. Because steps (1) and (3) often involve transformations that can
be forced into the form of Algorithm A, we will concentrate our efforts on
these steps. In certain cases speeding up these steps will not significantly
affect the overall time required to solve the eigenproblem, but in other cases,
such as the symmetric generalized eigenvalue problem, we will be speeding
up the most time-consuming portion of the whole operation. Sometimes part
of the algorithm simply has a matrix-by-vector multiplication; then application
of Dongarra and Eisenstat’s idea is straightforward. At other times, the code
will need to be radically transformed to fit the form of Algorithm A.

In Section 2 we describe some underlying ideas that can be used to
decrease memory references in various subroutines in the matrix eigenvalue
package EISPACK [6,11,13]. In Section 3 we apply the concepts of Section 2 to
specific subroutines in EISPACK and provide execution-timing information on
the CRAY-1, the current version of EISPACK [3]. The appendix contains
execution-timing information on the Hitachi S-810/20 and Fujitsu VP-200
(Amdahl 1200). (In [4] we presented reprogramming of selected subroutines
that are radically different from the original or representative of a class of
changes that might be applied to several subroutines.)

2. UNDERLYING IDEAS

In this section we outline some of the underlying methods that occur
throughout the algorithms used in the EISPACK package. We also discuss how
they can be implemented to decrease vector memory references, without
significantly increasing the number of floating-point operations.

SQUEEZING THE MOST OUT OF EIGENVALUE SOLVERS 117

2.1. Transformations

Many of the algorithms implemented in EISPACK have the following form:

ALGORITHM B.

For i,. . .
Generate matrix Ti

Perform transformation A i + 1 + T, A iTi- ’
End

Because we are applying similarity transformations, the eigenvalues of A i + I
are those of Ai. In this section we examine various types of transformation
matrices T,.

2.1 .l. Stabilized Elementary Transfmtions. Stabilized elementary
transformation matrices have the form T = PL, where P is a permutation
matrix, required to maintain numerical stability [12], and L has the form

‘1

1
1
* 1

\ * 1

The inverse of L has the same structure as L. Wher I 1 \- ’ is applied on the
right of a matrix, one has a subalgorithm with the exact form of Algorithm A,
which can be implemented using SMXPY. Unfortunately, when applying L on
the left as in Algorithm B, one does not get the same situation. The vector y
changes, but the vector x remains the same. However, in the sequence of
transformations in Algorithm B, Ti consists of a matrix Li whose off-diagonals
are nonzero, only in the i th column, and at the i th step, one might apply
transformations T, through T, only to the ith row of the matrix. Subsequent
row transformations from the left will not affect this row, and one can
implement this part of the algorithm using SXMPY.

This idea was incorporated in the subroutine ELMHES, which will be
discussed in Section 3.

118 JACK J. DONGARRA ET AL.

2.1.2. Householder Transfomtions. In most of the algorithms the
transformation matrices Ti are Householder matrices of the form

Q=I-jhm*, where /?u*u = 2,

so that Q is orthogonal. To apply Q from the left to a matrix A, one would
proceed as follows:

ALGORITHM C.

1. v*=u*A
2. Replace A by A - puv*

Naturally the first step in Algorithm C can be implemented using SXMPY, but
the second step, the rank-one update, does not fall into the form of Algorithm
A. However, when applying a sequence of Householder transformations, one
may mitigate the circumstances somewhat by combining more than one
transformation and thus performing a higher than rank-one update on A.
This is somewhat akin to the technique of loop unrolling discussed earlier. We
give two illustrative examples.

Firstly suppose that we wish to form (I - aww*)A(I - j?uu“), where for a
similarity transformation (Y = j3 and w = u. This is normally formed by first
applying the left-hand transformation as in Algorithm C, and then similarly
applying the right-hand transformation. But we may replace the two rank-one
updates by a single rank-two update using the following algorithm:

ALGORITHM D. 1.

1. v* = w*A
2. x=Au
3. y* + VT - (pW*X)U*
4. Replace A by A - /3ruT - awy*

As a second example suppose that we wish to form (I - ~yww*)(I - /?uu*)A;
then as with Algorithm D.l we might proceed as follows:

ALGORITHM D.2.

1. v*= w*A
2. X* = u*A

3. yT= VT-(pw%)r*
4. Replace A by A - ~UX* - awy*

SQUEEZING THE MOST OUT OF EIGENVALUE SOLVERS 119

In both cases we can see that steps 1 and 2 can be achieved by calls to SXMPY

and SMXPY. Step 3 is a simple vector operation and step 4 is now a rank-two
correction, and one gets 4 vector memory references for each 4 vector
floating-point operations (rather than the 3 vector memory references for
every 2 vector floating-point operations, as in step 2 Algorithm C). The
increased saving is not as much as is realized with the initial substitution of
SXMPY for the inner products in step 1 of Algorithm C, but it more than pays
for the additional 2n operations incurred at step 3 and exemplifies a tech-
nique that might pay off in certain situations. This technique was used to
speed up a number of routines that require Householder transformations.

2.1.3. Plane Rotations. Some of the most time-consuming subroutines
in EISPACK, e.g. HQRP, QZIT, IMTQLZ, TQLZ, spend most of time applying
transformations in 2 or 3 planes to rows or columns of matrices. We have
been able to speed up the application of these transformations by only about
159’0, but if one is spending 90% of one’s computation time here, the total
effect is greater than that of improving the part which only contributes 10?6
of the total computation time.

First of all we should mention that on the CRAY-1 the time required by a
S-multiply Householder transformation in 2 planes is hardly less than that
required by a 4multiply Givens transformation [121. Thus once again the
computation time is influenced more by the number of vector memory
references than by the number of floating-point operations. We were able to
eliminate several vector loads and stores by noticing that one of the planes
used in one transformation is usually present in the next. Thus a typical
Givens code which originally looked like

For i = 1 to n - 1
Compute ci and si
For j = 1 to n

t + hji
hji 6 tit + sihj,i+l

hj,i+l + sit - cihj i+l

End
End

would become

Forj=l to n
tj + h,,

End
For i = 1 to n - 1

120 JACK J. DONGARRA ET AL.

Compute ci and si
For j = 1 to n

hji +- citj + sihj,i+l
tj + siti - cihj,i+l

End
End
For j = 1 to n

hi, + tj
End

and a typical Householder code which looked like

For i=l to n-l
Compute qi, Ti and Yi
For j = 1 to n

P + h’i + oihJ,i+i
h c kji + pxi

hili+l e-h..],r+l + PYi
End

End

would become

For i = 1 to n - 2 in steps of 2

Compute qi,~i,yi~9i+l,~i+l and Yi+l
For j = 1 to n

P + hji + qihj,i+l

T + hj i+l + Qi+Ihj,i+z + YiP
hji 6 hii + pxi

hj,i+ 1 ch.. J,E+~ + PYi + Txi+l

hj,i+2 th.. j,r+Z + Yi+l
End

End

Notice that for the Householder transformations we have actually increased
the number of multiplications in total but stih the amount of time has
decreased. For a Splane Householder transformation, like that found in HQRB,

unrolling the loop twice causes about a 10% drop in execution time.
Inserting the modified Givens into a code like TQLZ is an easy task.

Changing codes Iike HQRZ to use the unrolled Householders is rather un-
pleasant.

SQUEEZING THE MOST OUT OF EIGENVALUE SOLVERS 121

2.2. Triangular Solvers
Assume one has an n X n nonsingular lower triangular matrix L and an

n x m matrix, B, and wishes to solve

LY=B. (2.1)

If m = 1 one might normally proceed as follows:

ALGORITHM E.

y+b
For i = 1 to n

Yi + Yi/‘ii
For j = i + 1 to n

Yj + Yj - ‘jiYi
End

End

(2.2)

Equation (2.2) almost looks like Algorithm A, but the length of the vector y
decreases. Unrolling the i loop once decreases the number of vector memory
references from 3 for every 2 vector floating-point operations to 4 for every 4
vector floating-point operations. The unrolled code would be of the following
form:

ALGORITHM F.

For i = 1 to n - 1 in steps of 2

Yi + Yi/‘ii

Yi+lc(Yi+l-‘i+l,iYi)/zi+l,i+l
For j=i+2;..,n

Yj + Yj - Yi’ji - Y’ t + I’j,i + 1
End

End
If (nmod2#0) y,+ y,/I,,

On the CRAY-1 the ratio of execution times of Algorithm F to Algorithm E is
1.5, as Table 1 indicates.

However, when m is sufficiently large that it makes computational sense
to treat vectors of length m, one can do much, much better by computing Y
by rows rather than repeating either Algorithm E or Algorithm F for each
column. Let Yj denote the first j rows of the matrix Y, yT denote its j th row,

122 JACK J. DONGARRA ET AL.

TABLE 1
CRAY-1 TIMES (IN lo- ’ SECONDS) FOR TRIANGULAR SOLVERS

n m Algorithm E Algorithm F Algorithm G

100 1 506 ,340 5.14
25 12.5 8.32 6.92

100 49.9 33.3 14.4

200 1 1.55 1.02 17.2
25 38.6 25.5 24.1

100 151 102 52.2
200 308 202 93.7

300 1 3.15 2.05 35.9
25 78.5 51.1 51.8

150 472 306 162
300 940 613 290

and l,? denote the jth row of L. Then one might proceed as follows:

ALGORITHM G.

Y+B
For j = 1 to 12

YT c b? - Zi’Yi_,
yf+ y!/l..

End ’ ‘I

(2.3)

The step (2.3) can be implemented using SXMPY. Obviously, working by
rows is superior if m is sufficiently large. Since Algorithm G uses vectors of
length m, when m is small one should use Algorithm F. We have discussed
triangular solvers using a lower triangular matrix. One can implement the last
three algorithms for an upper triangular matrix, and Algorithm G would
determine the last row first and work backwards. Triangular solvers occur in
the EISPACK subroutines REDIJC and REBAK used in the solution of the
symmetric generalized eigenvalue problem Ax = h Bx. Inserting calls to SXMPY
and SMXPY decreases the time required by these subroutines to such an extent
that the time required for the generalized eigenvalue problem is not apprecia-
bly more than that required for the standard eigenvalue problem on the
high-performance computers under discussion.

2.3. Matrix Multiplication with Symmetric Packed Storage
The algorithms in EISPACK that deal with symmetric matrices permit the

user to specify only the lower triangular part of the matrix. There are routines

SQUEEZING THE MOST OUT OF EIGENVALUE SOLVERS 123

requiring that a two-dimensional array be provided, using only the informa-
tion in the lower portion and routines accommodating the matrix packed into
a onedimensional array. The normal scheme for doing this matrix-vector
product would be

ALGORITHM H.

For j = 1 to n

t + Yj
For i=j+l to n

y, + yi + a. .x. ‘I I
t + t + aijx;

End
yj + t + aiixi

End

Certainly one might consider stepping the outer loop by 2, doing two inner
products followed by a rank-two correction. Another alternative in the same
vein, which unfortunately would not be amenable to a subroutine that packed
the symmetric matrix into a one-dimensional array, is the following:

ALGORITHM I.

For i = 1 to n - 1 in steps of 2
For j = 1 to i - 1

yj + Yj + aijri + a’ z+l,jXi+l

End
For j=i+I to n

yj + yj + ajixi + a,. x. j,z+1 :+l

End

Yi + Yi + ai+l,iXi+l + ‘ii’i

End

A less obvious technique is a divide-and-conquer approach. If we consider
referencing a symmetric matrix in a matrix-vector product where the matrix is
specified in the lower triangular matrix, we have

where I’, and T, are symmetric matrices stored in the lower portion and B is

124 JACK J. DONGARRA ET AL.

TABLE 2
COMPARISONOFEXRCUTIONTIMESONTHECRAY-1

FORSYMMETRICMATRIXMULTIPLY

Ratio of execution times

Order Alg. H/Alg. I Alg. H/Alg. HJ Alg. H/Alg. IJ
100 2.14 1.24 2.13
200 1.87 1.43 2.12
300 1.78 1.53 2.08

full. This can be written as

ALGORITHM J.

Set y, = Trr, + Brx,
Set yz = Bx, + Tzxz

In writing the matrix multiply this way, two things should be noted. There
are two square (n/2) x (n/2) full matrix-vector multiplications, and two
symmetrix matrix-vector products.

Table 2 gives a comparison on the CRAY-1 of Algorithm H (a standard
approach) with Algorithm I, Algorithm HJ (where T,x, and T2x2 of Al-
gorithm J are done according to Algorithm H), and Algorithm IJ (where these
are done according to Algorithm I).

When the matrix is packed in a one-dimensional array stored by column,
the same divide-and-conquer approach can be applied.

3. SUBROUTINES IN EISPACK

3.1. The Unsymmhic Eigenvalue Problem
In this section we investigate methods for the efficient implementation of

the algorithms that deal with the standard eigenvalue problem

Ax = Ax,

where A is a real general matrix. The algorithms for dealing with this problem
follow the form:

(1) Reduce A to upper Hessenberg form (ELMHES or ORTHES).
(2) Find the eigensystem of the upper Hessenberg matrix.
(3) If eigenvectors are requested, back-transform the eigenvectors of the

Hessenberg matrix to form the eigenvectors of the original system (ELMBAK or
ORTBAK).

SQUEEZING THE MOST OUT OF EIGENVALUE SOLVERS 125

For this particular problem, most of the time is spent in the second step, but
as was discussed in Section 2.1.3, this part is not easy to vectorize, so we
concentrate our discussion on steps (1) and (3).

3.1.1. ELMHES and ORTHES. In the subroutine ELMHES, which reduces a
matrix to upper Hessenberg form while preserving the eigenvalues of the
original matrix, a sequence of stabilized elementary transformations are used.
The transformations are of the form

Tk . . . T,T,AT;‘T;’ . . . T;?

This set of transformations has the effect of reducing the first k columns of A
to upper Hessenberg form.

The transformations can be applied in such a way that matrix-vector
operations are used in the time-consuming part. At the kth stage of the
reduction we apply the previous k - 1 transformations on the left side of the
reduced A to the last n - k elements of the k + 1st row. Then, on the right
the inverse of the kth transformation is applied to the reduced matrix A,
followed by the application on the left of all k transformations to the elements
below the diagonal of the kth column. Because of the structure of
the transformations (see Section 2.1.1), both these steps are simple matrix-
vector multiplication. The application of transformations from the left follows
essentially the algorithm given in Dongarra and Eisenstat [2] for the LU
decomposition of a matrix. In the original EISPACK codes, at the kth stage
permutations from the left are applied to only the last n - k + 1 columns of
the matrix. In our new code, in order to use SMXPY and SXMPY, we must apply
these permutations to the whole matrix. Thus the elements below the
subdiagonal of the matrix A which are necessary for finding the eigenvectors
might be slightly scrambled and hence the user must use the modified
nLh4n~K given in Section 3.1.3.

The subroutine ORTHES uses Householder orthogonal similarity transfor-
mations to reduce A to upper Hessenberg form. At the kth stage we perform
the operation

where Qk = Z - puu r. As shown in Algorithm D.l, the usual two rank-one
updates may be replaced by a rank-one update to the first k rows of A
followed by a rank-two update to rows k + 1 through n. In this case

126 JACK J. DONGARRA ET AL.

TABLE 3
COMPARISONOFEXECUTIONONTHECRAY-1

FORROUTINEELMHESANDORTHES

RATIO OFEXEXXlTIONTIMES:

(EISPACK/MV)

orthes

Order ELMHES Rank 1 only rank2

50 1.5 2.0 2.5
100 2.2 1.9 2.5
150 2.4 1.8 2.4

Algorithm D. 1 becomes

1. ur=urA
2. x=Au
3. yr = VT - (/WX)Ur
4. Replace A by A - /3(ru’+ uyT)

Seeing the transformations applied in this way leads to a straightforward
matrix-vector implementation. Table 3 reports the comparison between the
EISPACK implementations and the ones just described. Significant speedups
are accomplished using these constructs.

3.1.2. ELTRAN and ORTRAN. If all the eigenvectors are requested, one
might choose to use either ELTRAN or ORTRAN (depending on whether one
used ELMHES or ORTHES) followed by a call to HQRZ, rather than finding the
eigenvectors using INWT and then back transforming using ELMBAK or ORTBAK.
ELTRAN requires no floating-point operations, but because of the use of
stabilized elementary transformations in ELMHES, it may require swapping of
various rows of the partial eigenvector matrix being constructed. Because
ELMHES has changed, the swapping in ELTRAN is slightly different. ORTFWN

applies the Householder transformations determined in ORTHES to the identity
matrix. By combining two Householder transformations we can perform a
rank-two update to I using the technique described in Section 2.1.2, and this
realizes a cut in the execution time for this routine by a factor of two.

3.1.3. ELMBAK and ORTBAK. Both ELMBAK and ORTBAK compute the
eigenvectors of the original matrix given the eigenvectors of the upper
Hessenberg matrix and the transformations used to reduce the original matrix.
This requires that a set of transformations be applied on the left to the matrix
of eigenvectors in reverse order. The reduction is of the form TAT- ‘TX = XTX ,

SQUEEZING THE MOST OUT OF EIGENVALUE SOLVERS 127

where T = T,_, - T,T,. The eigenvectors, say Y, of the reduced matrix H are
found using

H=TAT-’ and HY = AY:

then the eigenvectors for the original problem are computed as

X = T-l)‘= T,-IT,-’ . . . T,-‘ye

The original EISPACK subroutines use T as a product of transformations as
given above. For ELMBAK we use a slightly different approach. As in Section
2.1.1, each Ti may be written as LiPi, where Pi is a permutation matrix and
Li is a lower triangular matrix. On output from the new ELMHES, let B be the
(n - 1) x (n - 1) lower triangular matrix below the subdiagonal of the re-
duced A. Let C be the unit lower triangular matrix

I1 \
0 1

c= .

Then one can show that T- ’ = PIPz P,_ ,C.
Since ORTBAK involves a product of Householder transformations, reducing

the number of vector memory references is again a straightforward task.
Dramatic improvements are seen in these back-transformation routines, as
shown in Table 4. Originally ELMBAK was 2.4 times faster than ORTBAK; in the
MV version it only enjoys an advantage of 1.9 over ORTBAK using (n - 1)/2
rank-2 changes.

TABLE 4
COMPARISON OF EXECUTION ON THE CRAY-1

FOR EISPACK ROUTINES ORTBAK AND ELMBAK

RATIO OF EXEXXJTION TIMES

(EISPACK/MV)

ORTBAK

Order ELMBAK Rank1 Rank2

50 2.2 2.8 3.6
100 2.6 2.5 3.3
150 2.7 2.3 3.0

128 JACK J. DONGARRA ET AL.

3.2. The Symmetric Eigenvalue Problem
In this section we look at the methods for efficient implementation of the

algorithms that deal with the symmetric eigenvalue problem

Ax = Ax,

where A is a real symmetric matrix. The algorithms for dealing with this
problem have two possible paths:

PATH 1.

(1) Transform A to tridiagonal form (TREDI).
(2) Find the eigenvalues of the tridiagonal matrix (IMTQLV).
(3) If the eigenvectors are requested, find the eigenvectors of the tridiago-

nal matrix by inverse iteration (TINVIT).
(4) If eigenvectors are requested, back-transform the vectors of the tridi-

agonal matrix to form the eigenvectors of the original system (TRBAKI).

PATH 2.

(1) Transform A to tridiagonal form, accumulating the transformations
(TRED2).

(2) Find the eigenvalues of the tridiagonal matrix and accumulate the
transformations to give the eigenvectors of the original matrix (IMTQLZ).

On conventional serial machines, Path 2 typically requires nearly twice as
much time as Path 1. On vector machines however we do not see this
relationship. For EISPACK, Path 2 is slightly faster and after the modification
described below requires roughly the same amount of time. This is the result
of two problems in routine TINVIT. First, TINWT has not been modified to
induce vectorization at any level. One can achieve an increase in performance
by vectorizing across the eigenvectors being computed. We have not pre-
sented an algorithm of this form, since it requires a different technique to
achieve performance and cannot run at supervector rates. The time spent in
TINVIT on serial machines is inconsequential with respect to the total time to
execute Path 1. However, on vector machines TINVIT becomes a significant
contributor to the total execution time of the path. The second factor
influencing performance for Path 1 is that the current version of TINVIT has a
call to an auxiliary routine, PYTHAG, in an inner loop of the algorithm. PYTHAG
is used to safely and portably compute the square root of the sum of squares.
If TINVIT is modified to replace the call to PYTHAG by a simple square root, the
time for TINVIT becomes more attractive by about 30%.

SQUEEZING THE MOST OUT OF EIGENVALUE SOLVERS 129

We note that the advantage of path 2 is that near-orthogonality of the
eigenvectors is guaranteed, while with Path 1 one may see some degradation
in this property for eigenvectors corresponding to close eigenvalues. Both
pathsgive excellent eigensystems in the sense that they are eigensystems of a
problem close to the original problem [12, 131.

We will now describe the implementation of routines TREDI and TREDZ
using matrix-vector operations.

3.2.1. TRED~,TREDS, and TRBAKL Routine TRED~ or TREDZ reduces a real
symmetric tridiagonal matrix using orthogonal similarity transformations. An
n x n matrix requires n - 2 transformations, each of which introduces zeros
into a particular row and column of the matrix, while preserving symmetry
and preserving the zeros introduced by previous transformations. TRED~ is
used to just compute the tridiagonal matrix, while TREDP, in addition to
computing the tridiagonal matrix, also returns the orthogonal matrix which
would transform the original matrix to this tridiagonal matrix. TRBAKl forms
the eigenvectors of the real symmetric matrix from the eigenvectors of the
symmetric tridiagonal matrix determined by TREDI. This orthogonal matrix
will later be used in computing the eigenvectors of the original matrix. These
subroutines deal with the real symmetric matrix as stored in the lower triangle
of an array.

The sequence of transformations applied to the matrix A is of the form

Ai+l+ QiAiQIy i=1,2;..,n-2,

where Q is a Householder matrix of the form described in Section 2.1.2. Each
of the similarity transformations is applied as in Algorithm D.l with the
simplification that w and u are the same, so that application becomes

1. x=Au
2. yr = XT - (p&)uT
3. Replace A by A - /3xuT - /3uyT

Since the matrix A is symmetric and stored in the lower triangle of the array,
the matrix-vector operation in step 1 follows the form described in Section 2.3
as implemented in Algorithm IJ.

TREDP differs from TRED~ in that the transformation matrices are accu-
mulated in an array 2. The sequence of transformations applied to the matrix
2 is of the form

Z n-2 = Qn-2,

Zz + QiZi+l' i = n - 3; . .,2,1.

130 JACK J. DONGARRA ET AL.

This can be implemented in a straightforward manner as in Algorithm C of
Section 2.1.2 using matrix-vector multiply and a rank-one update. Since all
transformations are available at the time they are to be accumulated, more
than one transformation can be accumulated at a time, say two at a time, thus
giving a rank-two update. This then gives an implementation that has the
form of Algorithm D.2 in Section 2.1.2.

When TREDI and TREDZ are implemented as described, significant im-
provements in the execution time can be realized on vector machines. Table 5
displays the execution time for the current EISPACK versions of TRED~ and
TRED~ as well as the modified matrix vector implementations, referred to as
TREDIV and TRED~V.

TRBAK~ applies the transformations used by TRED~ to reduce the matrix to
tridiagonal form. This can be organized as in TRED2, by matrix-vector muhipli-

TABLE 5
CRAY-1 TIMES(IN 10m2 set) FORTHE SYMMETRIC

GENERALIZEDEIGENVALUE PROBLEM

Subroutine n=lOO n = 200

REDUC 16.9 85.5
REDUC3 4.26 23.6
RJmIJCV 3.62 19.5
REDUC4 3.00 16.1

TREDl 6.94 38.5
TREDlV 4.95 29.7

TREDS 14.3 84.5
TREDPV 8.31 51.3

TQLl 7.58 29.1
TQL2 19.8 117

REBAK 9.79 52.5
FIEBAKV 2.20 15.3

No vectors:
total old
total new

32.92 165.4
16.15 78.3

Vectors:
total old
total new

60.8 339.6

33.9 203.1

SQUEEZING THE MOST OUT OF EIGENVALUE SOLVERS 131

cation and a rank-2 update. The table below shows the improvement in
performance when this is implemented:

COMPARISON OF EXECUTION ON THE CFtAY-1

FOR EISPACK ROUTINE TRBAKI

Order
Ratio of execution times

(EISPACK/MV version)

50 4.20
100 3.66

3.3. The Symmetric Generalized Eigenvalue Problem
In this section we consider methods for increasing the efficiency of the

subroutines in EISPACK for solving the generalized eigenvalue problem

Ax = hBx,

where A and B are symmetric matrices and B is positive definite. In EISPACK

this problem is solved in the following steps with the name of the correspond-
ing subroutine in the package given in parenthesis:

(1) Factor B into LLr, and form C = L-‘ALpT (REDUC).

(2) Solve the symmetric eigenvalue problem Cy = hy.
(3) If eigenvectors are requested, transform the eigenvectors of C into those

of the original system (REBAK).

In general the majority of the execution time is spent in REDUC and REBAK,

and it will be these routines on which we will concentrate.

3.3.1. REDUC. REDUC has three main sections:

1. Find the Cholesky factors of B, i.e., find lower triangular L such that
B=LLT

2. Find the upper triangle of E = Lp ‘A
3. Find the lower triangle of C = Lp ‘ET

Step 1, the Cholesky factorization, was discussed in Dongarra and Eisen-
stat [2]; its inner loop can be replaced by the call to SMKPY. Step 2 is a lower
triangular solve. The original code in EISPACK follows the suggestion in
Section 2.2 and computes E by rows. Thus it is a simple matter to replace the
inner loop by a call to SMKPY. Step 3 is another lower triangular solve. The
EISPACK encoding computes C by columns and uses the fact that C is

132 JACK J. DONGARRA ET AL.

symmetric. Thus the first i - 1 elements of the ith column of C are already
known before the code commences to work on the ith column. For the ith
column REDUC has two inner loops. The first updates the last n - i elements
with the previous known i - 1 elements. The second does a lower triangular
solve with an (n - 1) X (n - 1) matrix as in Algorithm E of Section 2.2. The
first loop can be easily implemented using a SMXPY; the only hope for easily
increasing the efficiency of the second loop is using Algorithm F of
Section 2.2.

Thus it is straightforward to replace three of the four inner loops of REDUC
by SMXPY, and this is accomplished by REDUC3 listed in Table 5. The decrease
in execution time of REDUC3 from REDUC is quite surprising, considering that
the changes being made affect only how the matrix is accessed. REDUCV

replaces the fourth loop of REDUC by Algorithm F of Section 2.2. It produces a
further modest saving.

REDUC4 replaces the two inner loops of step 3 of REDUC by a modification
of Algorithm G which computes only the first i elements of the ith row of C
rather than the whole row. Because C is symmetric, these first i elements are
also the first i elements of the ith column of C. Thus by the end of the ith
stage of step 3 of REDUCE, the top i X i submatrix of C has been computed
while at the same stage of REDUC and REDUCJ, the first i columns of C have
been computed. REDUCQ, as Table 5 indicates, is the least expensive of the
subroutines, but it has one major drawback. REDUC, REDUCS, end REDUCV

overwrite only the lower-triangular portions of the matrices A and B while
forming L, E, and C. REDUC4 overwrites the whole matrix A.

3.3.2. REBAK. The subroutine REBAK takes the eigenvectors Y of the
standard symmetric eigenproblem and forms those of the original problem X
by multiplying Y by L-r. Thus it is an upper-triangular solve with many
right-hand sides. The original REBAK computes X one column at a time using
inner products. REBAKV uses the upper-triangular version of Algorithm G to
compute X. The difference is computation times given in Table 5 for REBAK
and REBAKV is really remarkable considering that they require the same
number of floating-point operations.

3.4 The Singular-Value Decomposition

The singular-value decomposition (SVD) of an m X n matrix A is given

by

A = UZV*,

where U is an M X n orthogonal matrix, V is an n X n orthogonal matrix,
and Z is an m X n diagonal matrix containing the singular values of A, which

SQUEEZING THE MOST OUT OF EIGENVALUE SOLVERS 133

are the nonnegative square roots or the eigenvalues of ATA. Amongst the
many applications of the SVD algorithm is the solution of least-squares
problems and the determination of the condition number of matrix.

The algorithm implemented in EISPACK’S SVD is usually considered to
have two stages:

(1) Determine Q and 2 such that J = QAZ is bidiagonal.
(2) Iteratively reduce J to a diagonal matrix.

In typical applications where m X- n the first stage of the SVD calculation
is the most time consuming. The matrices Q and 2 are the product of
Householder transformations, and, as described in Section 2.1, the number of
vector memory references can be reduced by replacing all vector matrix
multiplications by calls to SXMPY, as is done in the subroutine SVDI given in
Table 6. Moreover, since each Householder transformation from the left is
followed by Householder transformation from the right, one may use Al-
gorithm D.1, and this is implemented in subroutine SVDV in Table 6. The
second stage of the SVD calculation involves plane rotations which, when
only the singular values are requested, do not involve any operations.

When the singular vectors are requested, the Householder transformations
which form Q and 2 are accumulated in reverse order. Here again we can
use the techniques described earlier. In the second stage, plane rotations are
applied to vectors, and it is not easy to decrease the number of vector
memory references as was discussed in Section 2.1.3.

Chan [I] has described a modification of SVD which, when m B n,
requires up to 50% fewer floating-point operations. Chan suggests first
applying Householder transformations from the left to reduce A to triangular

TABLE 6
CRAY-1 TIMES (IN lo-’ SW) FOR THE SINGULAFG’ALUE DECOMPOSITION

m= 100 200

n= 10 50 100 10 50 100

No singular vectors:
SVD

SVDI

SvDV

With singular vectors:
SVD

SVDI

SvDV

1.02 10.8 30.9 1.92 18.4 54.7
0.57 7.57 23.1 0.94 11.5 37.3
0.38 6.1 19.4 0.55 8.2 28.0

1.31 19.8 70.1 2.41 32.6 115
0.85 16.5 61.8 1.43 25.6 97.3
0.68 13.5 51.0 1.09 20.6 79.5

134 JACK J. DONGARRA ET AL.

form before applying the traditional SVD algorithm. Thus the Householder
transformations applied from the right, which are designed to annihilate
elements above the superdiagonal, would be applied to vectors of length n
rather than to vectors of length m. Unfortunately, on the CRAY-1 Chan’s
suggestion seems to produce at most a 10% speedup in execution time. When
the inner product loops in all Householder transformation applications are
replaced by calls to sIcIxpy, the execution times are still about the same as for
SVDV.

4. CONCLUSIONS

In this paper we have shown how to make some of the subroutines in
EISPACK more efficient on vector machines such as the CRAY-1. We have
concentrated our efforts on speeding up programs that already run at vector
speed but because of bottlenecks caused by referencing vectors in memory do
not run at supervector speeds. We have not considered subroutines which
currently run at scalar speeds, like BANDR [8] on small-bandwidth problems,
TINVIT, and BISECT, which can all be vectorized.

Our techniques for speeding up the eigenvalue solvers do not significantly
change the number of floating-point operations, only the number of vector
loads and stores. Since we have been able to obtain speedups in the range of 2
to 5, vector loads and stores seem to be the dominant factor in determining
the time required by an algorithm. Thus the traditional merit function, the
number of floating-point operations, seems to be not as relevant for these
machines as for the scalar machines.

For the most part we have been able to isolate computationally intense
sections of codes into well-defined modules. This has made some of the
programs shorter and has made their mathematical function clearer. Some of
the techniques used to gain better performance could be done by an
extremely clever vectorization compiler. However, this is not usually the case.
Certainly a clever compiler would not know that one could delay transforma-
tions as is done in the new ELMHES.

Our techniques will always produce faster code, even on machines with
conventional architecture. We have never resorted to assembly language.
Thus our programs are transportable. Moreover there is still room for some
improvement by using some assembly-language modules in critical places.

APPENDIX

Table 7 contains timing informations in the form of ratios of increased
performance over existing EISPACK routines on the Fujitsu VP-200 and Hitachi

SQUEEZING THE MOST OUT OF EIGENVALUE SOLVERS 135

TABLE 7

EISPACK/MV RATIOS

Hitachi S-810/20 Fujitsu VP-200
n ratio ratio

50 1.1 1.1
100 1.6 1.6
150 1.9 1.8
200 2.0 1.8
250 2.1 1.8
300 2.2 1.9

n

50
100
150
200
250
300

HEACHI S-810/20 FUJITSU VP-200

ORTHES ORTBAK ORTHES ORTBAK

ratio ratio ratio ratio

1.8 3.6 1.9 3.2
2.1 4.6 2.3 3.2
2.2 4.9 2.5 3.6
2.2 4.6 2.7 3.6
2.2 4.0 2.8 3.9
2.2 3.8 2.9 4.0

Hitachi S-810/20 Fujitsu VP-200
n ratio ratio

50 1.7 1.8
100 2.1 2.2
150 2.3 2.4
24w 2.4 2.5
250 2.5 2.6
300 2.5 2.6

SVD, Hitachi S-810/20”

m=lOO m=200

n=50 n=lOO n=50 n=lOcl n=150 n=200

novect 1.7 1.6 2.0 1.9 1.8 1.7
vect 2.0 1.7 3.0 2.5 2.2 2.0

SVD, Fujitsu VP-200”
m=loo ?Tl=200

fI=50 n=loo n=50 n=loo n=150 n=200

novect 1.6 1.5 1.9 1.8 1.7 1.7
vect 1.9 1.6 2.7 2.4 2.1 1.7

* Routines OR-S and ORTBAK here are implemented using rank-l updates only.
‘“‘novect” refers to computing just the singular values and “vect” refers to comput-
ing both the singular values and left and right singular vectors. m is the number of
rows and n the number of columns in the matrix.

136 JACK J. DONGARRA ET AL.

810/20 as they existed in September 1984. The matrix-vector multiply
routines, SMXPY and SXMPY, have been unrolled to a depth of eight for both
the Fujitsu and Hitachi machines. A depth of eight gives the best perfor-
mance on these machines. Subsequent hardware and software changes made
affect the timing information to some extent. n refers to the order of the
matrix; “ratio” is the execution time for the current version of the EISPACK

routine divided by the time for the modified version.

REFERENCES

4

5

6

7

8

9

10

11

12
13

T. Chan, An improved algorithm for computing the singular values decomposi-
tion, ACM Trans. Math. Software 8:72-89 (1982).
J. J. Dongarra and S. C. Eisenstat, Squeezing the most out of an algorithm in
CRAY Fortran, ACM Trans. Math. Software (3):221-230 (1984).
J. J. Dongarra and C. B. Moler, EISPACK-A package for solving matrix eigen-
value problems, in Sources and Development of Mathematical Software (W. R.
Cowell, Ed.), Prentice-Hall, (1984).
J. J. Dongarra, Linda Kaufman, and Sven Hammarling, Squeezing the most out of
eigenvdue solvers on high-performance computers, ANL-MCSD-TM/46, Argonne
National Lab. Jan. 1985.

Kirby Fong and Thomas L. Jordan, Some linear algebra algoritms and their
performance on the CRAY-1, Report UC-32, Los Alamos Scientific Lab. June 1977.
B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensystem
R~~~~~-EISPACK Guide Extension, Lecture Notes in Computer Science, Vol.
51, Springer, Berlin, 1977.
R. W. Hackney and C. R. Jesshope, Parallel Computers, J. W. Arrowsmith,
Bristol, Great Britain, 1981.
L. Kaufman, Banded eigenvalue solvers on vector machines, ACM Trans. Math.
Software lO(1):73-86 (1984).
C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Basic linear algebra subpro-
grams for Fortran usage, ACM Trans. Math. Software 5:308-371 (1979).
R. M. Russell, The CRAY-1 computer system, Comm. ACM 21(1):63-72 Jan.
1978.
B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and
C. B. Moler, Matrix Eigensystem Routines--E~s~~~~ Guide, Lecture Notes in

Computer Science, Vol. 6, 2nd ed., Springer, Berlin, 1976.
J. H. Wilkinson, The Algebraic Eigenualue Problem, Oxford U. P., London, 1965.
J. H. Wilkinson and C. Reinsch (Eds.) Handbook for Automatic Computation,
Vol. II, Linear Algebra, Springer, New York, 1971.

Hcw~iwti 18 Decn~Oer 1984; revised 23 September 1985

