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MESSAGE-PASSING PERFORMANCE OF VARIOUS 
COMPUTERS 

Jack J. Dongarra and Thomas H. Dunigan 

Abstract 

This report compares the performance of different computer systems 
for basic message passing. Latency and bandwidth are measured on Con- 
vex, Cray, IBM, Intel, KSR, Meiko, nCUBE, NEC, SGI, and TMC mul- 
tiprocessors. Communication performance is contrasted with the compu- 
tational power of each system. The comparison includes both shared and 
distributed memory computers as well as networked workstation clusters. 
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1. Introduction and Motivation 

1.1. The Rise of the Microprocessor 

The past decade has been one of the most exciting periods in computer develop- 
ment that the world has ever experienced. Performance improvements have been 
dramatic, and that trend promises to continue for the next several years. 

In particular, microprocessor technology has changed rapidly. Microproces- 
sors have become smaller, denser, and more powerful. Indeed, microprocessors 
have made such progress that, if cars had made equal progress since the day 
they were invented, we would now be able to buy a car for a few dollars, drive it 
across the country in a few minutes, and not worry about parking because the car 
would fit into one’s pocket. The result is that the vendors of high-performance 
computing have turned to RISC microprocessors for performance. 

Collections of these processors are interconnected by hardware and software 
to attack various applications. The physical interconnection of these processors 
may be contained in one or more cabinets as part of a multiprocessor, or the 
processors may be standalone workstations dispersed across a building or campus 
interconnected by a local area network. The effectiveness of using a collection 
of processors to solve a particular application is constrained by the amount of 
parallelism in the application, compiler technology, message passing software, 
amount of memory, and by the speed of the processors and of the interconnecting 
network. 

1.2. Communications and Parallel Processing Systems 

This report compares the results of a set of benchmarks for measuring commu- 
nication time on a number of NUMA computers ranging from a collection of 
workstations using PVM [5] to machines like the IBM SP-2 and the Cray T3D 
using their native communication library, MPI [4], or PVM. We are interested in 
the communication performance for a number of reasons. First, our main inter- 
est is to obtain fundamental parameters on a given hardware platform to help in 
building models of execution. Second, performance data can be used to compare 
machines and help to evaluate new machines and architectures as they become 
available. 

The following section describes the critical parameters in evaluating message 
passing systems. The techniques to measure these parameters are described. 
In section 3, the message passing performance of several multiprocessors and 
networks are presented. Communication and computational performance are 
contrasted. Section 4 provides details for obtaining the test software. 
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2. Message Passing 

2.1. Programming Model 

Processes of a parallel application distributed over a collection of processors must 
communicate problem parameters and results. In distributed memory multipro- 
cessors or workstations on a network, the information is typically communicated 
with explicit message-passing subroutine calls. To send data to another process, 
a subroutine is usually provided that requires a destination address, message, 
and message length. The receiving process usually provides a buffer, a maximum 
length, and the senders address. The programming model is often extended to in- 
clude both synchronous and asynchronous communication, group communication 
(broadcast and multicast), and aggregate operations (e.g., global sum). 

Message passing performance is usually measured in units of time or band- 
width (bytes per second). In this report, we choose time as the measure of perfor- 
mance for sending a small message. The time for a small, or zero length, message 
is usually bounded by the speed of the signal through the media (latency) and 
any software overhead in sending/receiving the message. Small message times are 
important in synchronization and determining optimal granularity of parallelism. 
For large messages, bandwidth is the bounding metric, usually approaching the 
maximum bandwidth of the media. Choosing two numbers to represent the per- 
formance of a network can be misleading, so the reader is encouraged to plot 
communication time as function of message length to compare and understand 
the behavior of message passing systems. 

Message passing time is usually a linear function of message size for two 
processors that are directly connected. For more complicated networks, a per- 
hop delay may increase the message passing time. Message-passing time, t,, can 
be modeled as 

t, = a + pn + ( h  - 1)y 

with a start-up time, a, a per-byte cost, p ,  and a per-hop delay, y, where n 
is the number of bytes per message and h the number of hops a message must 
travel. On most current message-passing multiprocessors the per-hop delay is 
negligible due to “worm-hole’’ routing techniques and the small diameter of the 
communication network [3]. The results reported in this report reflect nearest- 
neighbor communication. A linear least-squares fit can be used to calculate cy 
and p from experimental data of message-passing times versus message length. 
The start-up time, a, may be slightly different than the zero-length time, and 
1/p should be asymptotic bandwidth. The message length at which half the 
maximum bandwidth is achieved, n112, is another metric of interest and is equal 
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to C Y / @  [6]. As with any metric that is a ratio, any notion of “goodness” or 
“optimality” of nlp should only be considered in the context of the underlying 
metrics CY and @. 

There are a number of factors that can affect the message passing performance. 
The number of times the message has to be copied or touched (e.g., checksums) 
is probably most influential and obviously a function of message size. The vendor 
may provide hints as to how to reduce message copies, for example, by posting 
the receive before the send. Second order effects of message size may also affect 
performance. Message lengths that are powers of two or cache-line size may 
provide better performance than shorter lengths. Buffer alignment on word, 
cache-line, or page may also affect performance. For small messages, context- 
switch times may contribute to delays. Touching all the pages of the buffers 
can reduce virtual memory effects. For shared media, contention may also affect 
performance. There also may be some first-time effects that can be identified or 
eliminated by performing some “warm up” tests before collecting performance 
data. 

There are of course other parameters of a message-passing system that may 
affect performance for given applications. The aggregate bandwidth of the net- 
work, the amount of concurrency, reliability, scalability, and congestion manage- 
ment may be issues. 

2.2. Measurement Methodology 

To measure latency and bandwidth, we use a simple echo test between two ad- 
jacent nodes. A receiving node simply echos back whatever it is sent, and the 
sending node measures round-trip time. Times are collected for some number 
of repetitions (100 to 1000) over various messages sizes (0 to 1,000,000 bytes). 
Times can be collected outside the repetition loop as illustrated in Figure 2.1. 
If the system has high resolution timers then a more detailed analyses can be 
made by timing each send-receive pair. The time for each send-receive is saved 
in a vector and printed at the end of the test. For small message sizes, clock 
resolution may not be adequate, and clock jitter from time-sharing interrupts in 
the underlying OS may be observed. Unidirectional transfer time, or latency, 
is calculated as the minimum send-receive time (divided by two) for zero-length 
messages. Data rate, or bandwidth, is calculated from the number of bytes sent 
divided by half the round-trip time. 
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500 0.9 
900 9.7 

Echo Server 
Initialize 

Start timer 

For N iterations 

Send M bytes - - -  
Recv M bytes e-- 

End DO 

Stop timer 

Print stats 

1.2 
12 

Echo Client 
Initialize 

Do forever 

-3 Recv M bytes 
Send M bytes - -  

End DO 

Figure 2.1: Echo test pseudo-code. 

2.3. Latency and Bandwidth 

Latency and bandwidth were measured on a number of different multiproces- 
sors. Each architecture is briefly summarized in Appendix A. Table 2.3 shows 
the measured latency, bandwidth, and nli2 for nearest neighbor communication. 
The table also includes the peak bandwidth as stated by the vendor. For compar- 
ison, typical data rates and latencies are reported for several local area network 
technologies. 

Machine os 
Convex SPPlOOO (PVM) SPP-UX 3.0.4.1 
Convex SPPlOOO (sm 1-n) SPP-UX 3.0.4.1 
Convex SPPlOOO (sm m-n) SPP-UX 3.0.4.1 
Convex SPPl200 (PVM) SPP-UX 3.0.4.1 
Convex SPPl200 (sm 1-n) SPP-UX 3.0.4.1 
Convex SPPl200 (sm m-n) SPP-UX 3.0.4.1 
Cray T3D (sm) MAX 1.2.0.2 
Cray T3D (PVM) MAX 1.2.0.2 
Intel Paragon OSF 1.0.4 
Intel Paragon SUNMOS 1.6.2 
Intel Delta NX 3.3.10 
Intel iPSCl880 NX 3.3.2 
Intel iPSCj2 NX 3.3.2 
IBM SP-1 MPL 
IBM SP-2 MPI 
K S R l  OSF Rl.2.2 
Meiko CS2 (sm) Solaris 2.3 
Meiko CS2 Solaris 2.3 
nCUBE 2 Vertex 2.0 
nCUBE 1 Vertex 2.3 
NEC Cenju-3 Env. Re1 1.5d 
NEC Cenju-3 (sm) Env. Re1 1.5d 
SGI IRIX 6.1 
TMC CM-5 CMMD 2.0 
Ethernet TCPl IP  
FDDI TCP/IP 
ATM-100 TCPI IP  

~~ " 
Latency Bandwidth n1j2 

n = 0 (ps) n = lo6 (MB/s) bytes 

76 11 1000 
2.5 82 1000 
12 59 1000 
63 15 1000 

2.2 92 1000 
11 71 1000 
3 128 363 

21 27 1502 
29 154 7236 
25 171 5856 
77 8 900 
65 3 340 

370 2.8 1742 
270 7 1904 
35 35 3263 
73 8 635 
11 40 285 
83 43 3559 

154 1.7 333 
384 0.4 148 

13 900 40 
34 25 400 
10 64 799 

Theoretical 
Bandwidth 

(MBls) 
250 
250 
250 
250 
250 
250 
300 
300 
175 
175 
22 
3 
3 

40 
40 
32 
50 
50 

2.5 
1 

40 
40 

1200 

900 3.5 I 12 
.~~ 
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Figure 2.2 details the message-passing times of various multiprocessors over 
a range of message sizes. For small messages, the fixed overhead and latency 
dominate transfer time. For large message, the transfer time rises linearly with 
message size. Figure 2.3 illustrates the asymptotic behavior of bandwidth for 
large message sizes. It is possible to reduce latency on the shared-memory ar- 
chitectures by using shared-memory copy operations. These operations usually 
involve only one-processor and assume that the message is ready to be retrieved 
on the other processor. Figure 2.4 compares the message transfer times for the 
shared-memory get and explicit message passing for the Cray T3D, Meiko, and 
NEC. Current research in “active messages” is seeking ways to reduce message- 
passing overhead by eliminating context switches and message copying. Finally, 
Figure 2.5 graphically summarizes the communication performance of the various 
multiprocessors in a two-dimensional message-passing metric space. The upper- 
left region is the high performance area, lower performance and LAN networks 
occupy the lower performance region in the lower right. 

. 

1-06 1 
100000 i iPSC1860 

s SP2 
M Meiko 

I I I I I I I 

10 100 1000 10000 100000 1-06 
Message size (bytes) 

Figure 2.2: Message-passing transfer time in microseconds for various multipro- 
cessors and messages sizes. 

Since clusters of workstations on a network are often used as a virtual parallel 
machine, it is interesting to compare latency and bandwidths for various local 
area networks. Most communications over local area networks is done with the 

. 
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100 

10 

C Convex 
I iPSC1860 
M Meiko 
N NEC 
P ParagonlSunrnos 
s SP2 

0.1 T T3D 
X SGI 

1 

10 100 1000 10000 100000 le+06 
Message size (bytes) 

Figure 2.3: Message-passing bandwidth in megabytes/second for various mul- 
tiprocessors and messages sizes. 

TCP/IP protocols, though proprietary API’s may exist. We measured latency 
for small messages using a UDP echo test. TCP bandwidth was measured at 
the receiver with the ttcp program using 50,000 byte messages and 50,000 byte 
window sizes. Some newer operating systems support even larger window sizes, 
which could provide higher bandwidths. Most high-end workstations can transmit 
network data at or near media data rates (e.g., 12 MB/second for FDDI). Data 
rates of 73 MB/second for UDP have been reported between Crays on HiPPI 
(and even over a wide-area using seven OC3’s) [l]. Latency and bandwidth 
will depend as much.on the efficiency of the TCP/IP implementation as on the 
network interface hardware and media. As with multiprocessors, the number of 
times the message is touched is a critical parameter as is context-switch time. 
Latencies for local area networks (Ethernet, FDDI, ATM, HiPPI) are typically 
on the order of 500 ,us. For wide-area networks, latency is usually dominated by 
distance (speed of light) and is on the order of tens of milliseconds. 

Message passing is often the limiting factor in performance of a parallel com- 
puter, so it is insightful to compare communication performance with computa- 
tional performance for various architectures. The relative speed of computation 
and communication can be used in choosing the granularity of parallelism in im- 

- 
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M Meiko sharedmemory 
m Meiko MPI 
T Cray T3D shared memory 
t Cray T3D PVM 
N NEC shared memory 
n NECMPI 
C Convex SPP1200 shared memory 
c Convex SPP1200 PVM 

10 100 low 10000 1 ooO0o l M 6  
Message size (bytes) 

Figure 2.4: Transfer time in microseconds for both shared-memory operations 
and explicit message passing. 

plementing a given application, or in optimizing the movement of data between 
processors or between levels of the memory hierarchy. 

3. Computation and Communication 

3.1. Performance 

The performance of a computer is a complicated issue, a function of many in- 
terrelated quantities. These quantities include the application, the algorithm, 
the size of the problem, the high-level language, the implementation, the human 
level of effort used to optimize the program, the compiler’s ability to optimize, the 
age of the compiler, the operating system, the architecture of the computer, and 
the hardware characteristics. The results presented for benchmark suites should 
not be extolled as measures of total system performance (unless enough analysis 
has been performed to indicate a reliable correlation of the benchmarks to the 
workload of interest) but, rather, as reference points for further evaluations. 

Computational performance is often measured in terms of Megaflops, mil- 
lions of floating point operations per second (Mflop/s). We usually include both 
additions and multiplications in the count of Mflop/s, and the reference to an 
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n 100 
J? 
W 9 

Message-passing Space 

T3D(3,128) 0 Paragon (25,171) 

spp12uu~~%)(10,64) 
oCS2(87,43) 

cs2(11y4u) 0 Sp2(38,34) 
C332 
&1,27j@ SPPl200 (60,16) 

Nl3C Cenju-3(40,13) 0 oCM5 (95,9) 
0 Delta(70,8) 

iPSC/860 (70,3) 0 0 iPSC/2(370,3) 

0 Ncube2 (1549) 
Ether(500,l) 1 

1 10 100 
Latency (us) 

1000 

Figure 2.5: Latency/bandwidth space €or 0-byte message (latency) and 1 M B  
message (bandwidth). Block points represent shared-memory copy performance. 
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operation is assumed to be on 64-bit operands. 
The manufacturer usually refers to peak performance when describing a sys- 

tem. This peak performance is arrived at by counting the number of floating-point 
additions and multiplications that can be performed in a period of time, usually 
the cycle time of the machine. As an example, the IBM SP-1 processor, has a cy- 
cle time of 62.5 MHz. During a cycle the results of the multiplyfadd instruction 
can be completed giving: 

2 operationsll cycle * 1 cyclefl6nsec = 125 Mflopfs. 

Table 3.1 displays the performance for a single processor of various parallel 
computers using the LINPACK Benchmark [2]. The floating point execution 
rates have been converted to operations per cycle and also calculated the number 
of cycles consumed, as overhead (latency), during communication. At one time, 
a programmer had to go out of his way to code a matrix routine that would not 
run at nearly top efficiency on any system with an optimizing compiler. Owing 
to the proliferation of exotic computer architectures, this situation is no longer 
true. 

Table 3.1: Computation Performance. 

Machine os 
Convex SPPlOOO (PVM) SPP-UX 3.0.4.1 
Convex SPPlOOO Ism 1-nb 
Convex SPPlooo ism m-i )  
Convex SPPl200 (PVM) 
Convex SPPl200 (sm 1-n) 
Convex SPPl200 (sm m-n) 
Cray T3D (sm) 
Cray T3D (PVM) 
Intel Paragon 
Intel Paragon 
Intel Delta 
Intel iPSC/880 
Intel iPSC/2 
IBM SP-1 
IBM SP-2 
KSR-1 
Meiko CS2 (MPI) 
Meiko CS2 (Em) 
nCUBE 2 
nCUBE 1 
NEC Cenju-3 
NEC Cenju-3(sm) 
SGI Power Challenge 
TMC CM-5 

SPP-UX 3.0.4.1 

MAX 1.2.0.2 

OSF 1.0.4 
SUNMOS 1.6.2 
NX 3.3.10 
NX 3.3.2 
NX 3.3.2 
MPL 
MPI 
OSF Rl.2.2 
Solaris 2.3 

Vertex 2.0 
Vertex 2.3 
Env Rev 1.5d 
Env Rev 1.5d 
IRIX 6.1 
CMMD 2.0 

Clock cycle 
MHz (nsec) 

100 (10) 

100 

150 

50 

40 
40 
16 

62.5 
66 
40 
90 

20 
8 

75 
75 
90 
32 

3.2. The LINPACK Benchmark 

(8.33) 

(6.67) 

(20) 

(25) 
(25) 
(63) 
(16) 

(25) 
(11.11) 

(50) 
(125) 

(11.11) 

(15.15) 

(13.3) 
(13.3) 

(31.25) 

Linpack 100 
Mfls (opslcl) 

48 (.48) 

65 

38 

10 

9.8 
9.8 
.37 
38 

130 
15 
24 

-78 
.10 
23 
23 

126 - 

Linpack 1000 
Mfls (ops/cl) 
123 (1.23) 

123 

94 

34 

34 
34 

104 
236 
31 
97 

2 

39 
39 

308 

- 

- 

- 

Latencv 
us (cl) 
76 (7600) 

2.6 (260) 
11 (1080) 
63 (756oj 

2.2 (264) 
11 (1260) 
3 (450) 

21 (3150) 
29 (1450) 
25 (1250) 
77 (3080) 
65 (2600) 

370 (5920) 
270 (16875) 
35 (2310) 
73 (2920) 
83 (7470) 

154 (3080) 
384 (3072) 
40 (3000) 
34 (2550) 

95 (3040) 

11 (990) 

10 (900) 

The LINPACK benchmark features solving a system of linear equation, Az = b. 
The benchmark results examined here are for two distinct benchmark problems. 
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The f i s t  problem uses Fortran software from the LINPACK software package to 
solve a matrix problem of order 100. That is, the matrix A has 100 rows and 
columns and is said to be of size 100 x 100. The software used in this experiment 
is based on two routines from the LINPACK collection: DGEFA and DGESL. 
DGEFA performs the decomposition with partial pivoting, and DGESL uses that 
decomposition to solve the given system of linear equations. Most of the time - 
O(n3) floating-point operations - is spent in DGEFA. Once the matrix has been 
decomposed, DGESL is used to find the solution; this requires O(n2) floating- 
point operations. 

DGEFA and DGESL in turn call three BLAS routines: DAXPY, IDAMAX, 
and DSCAL. For the size 100 benchmark, the BLAS used are written in For- 
tran. By far the major portion of time - over 90% at order 100 - is spent in 
subroutine DAXPY. DAXPY is used to multiply a scalar, CY, times a vector, z, 
and add the results to another vector, y. It is called approximately n2/2 times 
by DGEFA and 2n times by DGESL with vectors of varying length. The state- 
ment yi t yi + azi, which forms an element of the DAXPY operation, is 
executed approximately n3/3 + n2 times, which gives rise to roughly (2/3)n3 
floating-point operations in the solution. Thus, the benchmark requires roughly 
2/3 million floating-point operations. 

For the LINPACK 100 test, many processors achieve one floating point oper- 
ation every four cycles, even though the process has the ability to deliver much 
more than this. The primary reason for this lack of performance relates to the 
poor compiler generated code and the algorithm’s ineffective use of the memory 
hierarchy. There are a few exceptions, most notably the IBM SP-2’s processor. 
The RS/6000-590 processor is able to achieve two floating point operations per 
cycle for the LINPACK 100 test, because the compiler and the cache structure 
work together. There are also examples of poor performance on some of the first 
generation parallel machines, such as the nCUBE 1 and 2 and the Intel iPSC/2. 
These processors are able to achieve only .01 to .04 floating point operations per 
cycle. 

In the second benchmark, the problem size is larger (matrix of order lOOO), 
and modifying or replacing the algorithm and software is permitted to achieve as 
high an execution rate as possible. (The optimized programs must still maintain 
the same relative accuracy as standard techniques.) The algorithm used for the 
n = 1000 problem makes better use of the memory hierarchy by utilizing the data 
in cache. Thus, the hardware had more opportunity for reaching near-asymptotic 
rates. Most of the processors achieve 70 to 80 % of their peak. 

If we examine the algorithm used in LINPACK and look at how the data 
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are referenced, we see that at each step of the factorization process there are 
operations that modify a full submatrix of data. This update causes a block of 
data to be read, updated, and written back to central memory. The number 
of floating-point operations is (2/3)n3, and the number of data references, both 
loads and stores, is (2/3)n3. Thus, for every add/muZtipZy pair we must perform 
a load and store of the elements, unfortunately obtaining no reuse of data. Even 
though the operations are fully vectorized, there is a significant bottleneck in 
data movement, resulting in poor performance. To achieve high-performance 
rates, this operation-to-memory-reference rate must be higher. 

Just as the operation-to-memory-reference rate af€ects performance at the in- 
struction level, the computation-to-communication ratio for message passing will 
affect application performance at a coarser level. The compiler and/or applica- 
tion programmer can improve application performance by algorithm restructing 
to increase data re-use and by reducing or pipelining message passing. 

4. Future comparisons 

In order that the reader might perform these same tests, both LINPACK and the 
message-passing tests are available over the Internet. 

4.1. Rules for Running the Tests 

The message-passing test software intentionally has been kept simple so that it 
will be easy for an experienced programmer to adapt the program, or parts of 
it, to a specific architecture with only a modest effort. In running the tests, the 
user is allowed to change the message passing calls to the appropriate call on the 
specific system the program is to be run on. We have provided both PVM and 
MPI [4] implementations in netlib. 

4.2. Obtaining the Software 

The software used to generate the data for this report can be obtained by sending 
electronic mail to netZib@www.netZib.org . To receive the single-precision software 
for this benchmark, in the mail message to netZib@www.netZib.org type send 
commshar  f r o m  benchmark . To receive the double-precision software for this 
benchmark, type send commshar  f r o m  benchmark . 

A web browser can be used as well. With the url 

http ://www. netlib. o rg/benchmark/ind ex. htmZ 

click on “benchmark/comm.shar” . 

I 

mailto:netZib@www.netZib.org
mailto:netZib@www.netZib.org
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Appendix 

A. Appendix: Machine Configurations for Echo Tests 

A summary of the various architectures and configurations used when these per- 
formance figures were measured follows. Unless otherwise noted, the test pro- 
grams were compiled with cc -0. 

The Convex SPPlOOO and SPP1200 consist of SCI-ring connected nodes 
(160 MB/second). Each SPPlOOO node consists of eight 100 MHz HP PA RISC 
7100 processors (120 MHz for the SPP1200) with a cross-bar memory interconnect 
(250 MB/second). The tests were run under SPP-UX 3.0.4.1 and ConvexPVM 
3.3.7.1. 

The Cray T3D is 3-D-torus multiprocessor using the 150 MHz DEC Al- 
pha processor. Communication channels have a peak rate of 300 MB/second. 
Tests were performed using MAX 1.2.0.2. A special thanks to Majed Sidani of 
Cray for running our communication tests on the T3D using PVM. The PVM 
communication was with pvmqsend and pvm-precv. 

The Intel iPSC/860 is Intel’s third generation hypercube. Each node has 
a 40 MHz i860 with 8 KB cache and at least 8 MB of memory. Communica- 
tion channels have a peak rate of 2.8 MB/second. Tests were performed using 
NX 3.3.2. The Intel iPSC/2 uses the same communication hardware as the 
iPSC/860 but uses 16 MHz 80386/7 for computation. 

The Intel Delta is a 512-node mesh designed as a prototype for the Intel 
Paragon family. Each node has a 40 MHz i860 with 8 KB cache and 16 MB 
of memory. Communication channels have a peak rate of 22 MB/second. Tests 
were performed using NX 3.3.10. 

The Intel Paragon is a mesh-based multiprocessor. Each node has at least 
two 50 MHz i86OXP processors with 16 KB cache and at least 16 MB of memory. 
One processor is usually dedicated to communications. Communication channels 
have a peak rate of 175 MB/second. Test were run under OSF 1.0.4 Server 
1.3/WW48-02 and SUNMOS 1.6.2 (using NX message passing). 

The IBM SP1 is an omega-switch-based multiprocessor using 62.5 MHz 
RS6000 processors. Communication channels have a peak rate of 40 MB/second. 
Tests were run using MPL. 

The IBM SP2 is an omega-switch-based multiprocessor using 66 MHz RS6000 
processors with L2 cache. Communication channels have a peak rate of 40 
MB/second. Tests were run using MPI. The MPI communication was with 
mpisend and mpirecv. 



- 14-  

The Kendall Square architecture is a shared-memory system'based on a 
hierarchy of rings using a custom 20 MHz processor. Shared-memory latency 
is about 7 ps, and bandwidth is about 32 MB/second. The message-passing 
performance was measured using Pacific Northwest Laboratory's tcgmsg library 
on one ring of a KSRl running OSF R1.2.2. 

The communication topology is a fat tree with peak bandwidth of 50 MB/second. 
The MPSC message-passing library was used for the echo tests. Meiko notes that 
using point-to-point bidirectional channels in the echo test reduces latency from 
82 microseconds to 14 microseconds. A special thanks to Jim Cownie of Meiko 
for running our communication tests. 

The Ncube hypercube processors are custom processors with hypercube com- 
munication integrated into the chip. The first generation chip ran at 8 MHz, the 
second generation chip ran at 20 MHz. 

The NEC Cenju-3 results are from a 75 MHz VR44OOSC MIPS processor 
with 32 KBytes of primary cache and 1 MByte of secondary cache using MPI 
under the Cenju Environment Release 1.5d. Communication channels have a 
peak rate of 40 MB/second through a multistage interconnection network. 

The SGI results are from a 90 MHz Powerchallenge using MPI under IRIX 
6.1. The SGI is a shared-memory multiprocessor using a 1.2 GB/s bus. 

The TMC CM5 is hypertree multiprocessor using 32 MHz SPARC processors 
with four vector units and 16 MB of memory per node. Communication channels 
have a peak rate of 20 MB/second. Tests were run using the message passing 
library CMMD 2.0. 

The Meiko CS2 uses SPARC processors with 200 Mflop/s vector co-processors. 
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