
OAK RIDGE
NATIONAL
LAB0 RAT0 RY

ORNVTM-13006

Message-Passing Performance of
Various Computers

L O E K R R R D M A R T I N -7t

Jack J. Dongarra
Thomas H. Dunigan

P
I ,

MANAGED BY
LOCKHEED MARTIN ENERGY SYSTEMS, INC.

;i

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and TednI
cal Information. P.O. Box 62, Oak Ridge. TN 37831; prices availab from (615)
576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce. 5265 Port Royal Rd., Springfield. VA 22161.

This report was prepared as an account of work sponsored by M a- of
the United States Government. Neither the United States Government KK any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liibility or responsibiti for the accuracy. corn
pleteness. or usefulness of any information, apparatus. product. or procesa db-
closed, or represents that its use wwld not infringe privately owned fights.
Reference herein to any specific commercial product, procesa, or aewh by
trade name, trademark, manufacturer, or othedse. does not necessarily m t c
M e or imply its endorsement. recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

ORNL/TM-13006

Computer Science and Mathematics Division

Mathematical Sciences Section

MESSAGE-PASSING PERFORMANCE OF VARIOUS
COMPUTERS

Jack J. Dongarra and Thomas H. Dunigan

Mathematical Sciences Section
Oak Ridge National Laboratory

P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

dongarra@cs.ut k.edu t hd@ornl.gov

Date Published: February 1996

Research was supported by the Applied Mathematical
Sciences Research Program of the Office of Energy Re-
search, U.S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Lockheed Martin Energy Research Corp.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DEAC05-960R22464

mailto:hd@ornl.gov

Contents

1

2

3

4

5
A

Introduction and Motivation
1.1 The Rise of the Microprocessor
1.2 Communications and Parallel Processing Systems
Message Passing .
2.1 Programming Model
2.2 Measurement Methodology
2.3 Latency and Bandwidth
Computation and Communication
3.1 Performance .
3.2 The LINPACK Benchmark
Future comparisons .
4.1 Rules for Running the Tests
References .
Appendix: Machine Configurations for Echo Tests . . .

4.2 Obtaining the Software

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1
1
1
2
2
3
4
7
7
9

11
11
11
12
13

... . 111 .

.. ~ ..__-__..

MESSAGE-PASSING PERFORMANCE OF VARIOUS
COMPUTERS

Jack J. Dongarra and Thomas H. Dunigan

Abstract

This report compares the performance of different computer systems
for basic message passing. Latency and bandwidth are measured on Con-
vex, Cray, IBM, Intel, KSR, Meiko, nCUBE, NEC, SGI, and TMC mul-
tiprocessors. Communication performance is contrasted with the compu-
tational power of each system. The comparison includes both shared and
distributed memory computers as well as networked workstation clusters.

- v -

1. Introduction and Motivation

1.1. The Rise of the Microprocessor

The past decade has been one of the most exciting periods in computer develop-
ment that the world has ever experienced. Performance improvements have been
dramatic, and that trend promises to continue for the next several years.

In particular, microprocessor technology has changed rapidly. Microproces-
sors have become smaller, denser, and more powerful. Indeed, microprocessors
have made such progress that, if cars had made equal progress since the day
they were invented, we would now be able to buy a car for a few dollars, drive it
across the country in a few minutes, and not worry about parking because the car
would fit into one’s pocket. The result is that the vendors of high-performance
computing have turned to RISC microprocessors for performance.

Collections of these processors are interconnected by hardware and software
to attack various applications. The physical interconnection of these processors
may be contained in one or more cabinets as part of a multiprocessor, or the
processors may be standalone workstations dispersed across a building or campus
interconnected by a local area network. The effectiveness of using a collection
of processors to solve a particular application is constrained by the amount of
parallelism in the application, compiler technology, message passing software,
amount of memory, and by the speed of the processors and of the interconnecting
network.

1.2. Communications and Parallel Processing Systems

This report compares the results of a set of benchmarks for measuring commu-
nication time on a number of NUMA computers ranging from a collection of
workstations using PVM [5] to machines like the IBM SP-2 and the Cray T3D
using their native communication library, MPI [4], or PVM. We are interested in
the communication performance for a number of reasons. First, our main inter-
est is to obtain fundamental parameters on a given hardware platform to help in
building models of execution. Second, performance data can be used to compare
machines and help to evaluate new machines and architectures as they become
available.

The following section describes the critical parameters in evaluating message
passing systems. The techniques to measure these parameters are described.
In section 3, the message passing performance of several multiprocessors and
networks are presented. Communication and computational performance are
contrasted. Section 4 provides details for obtaining the test software.

- 2 -

2. Message Passing

2.1. Programming Model

Processes of a parallel application distributed over a collection of processors must
communicate problem parameters and results. In distributed memory multipro-
cessors or workstations on a network, the information is typically communicated
with explicit message-passing subroutine calls. To send data to another process,
a subroutine is usually provided that requires a destination address, message,
and message length. The receiving process usually provides a buffer, a maximum
length, and the senders address. The programming model is often extended to in-
clude both synchronous and asynchronous communication, group communication
(broadcast and multicast), and aggregate operations (e.g., global sum).

Message passing performance is usually measured in units of time or band-
width (bytes per second). In this report, we choose time as the measure of perfor-
mance for sending a small message. The time for a small, or zero length, message
is usually bounded by the speed of the signal through the media (latency) and
any software overhead in sending/receiving the message. Small message times are
important in synchronization and determining optimal granularity of parallelism.
For large messages, bandwidth is the bounding metric, usually approaching the
maximum bandwidth of the media. Choosing two numbers to represent the per-
formance of a network can be misleading, so the reader is encouraged to plot
communication time as function of message length to compare and understand
the behavior of message passing systems.

Message passing time is usually a linear function of message size for two
processors that are directly connected. For more complicated networks, a per-
hop delay may increase the message passing time. Message-passing time, t,, can
be modeled as

t, = a + pn + (h - 1)y

with a start-up time, a, a per-byte cost, p , and a per-hop delay, y, where n
is the number of bytes per message and h the number of hops a message must
travel. On most current message-passing multiprocessors the per-hop delay is
negligible due to “worm-hole’’ routing techniques and the small diameter of the
communication network [3]. The results reported in this report reflect nearest-
neighbor communication. A linear least-squares fit can be used to calculate cy
and p from experimental data of message-passing times versus message length.
The start-up time, a, may be slightly different than the zero-length time, and
1/p should be asymptotic bandwidth. The message length at which half the
maximum bandwidth is achieved, n112, is another metric of interest and is equal

- 3 -

to C Y / @ [6]. As with any metric that is a ratio, any notion of “goodness” or
“optimality” of nlp should only be considered in the context of the underlying
metrics CY and @.

There are a number of factors that can affect the message passing performance.
The number of times the message has to be copied or touched (e.g., checksums)
is probably most influential and obviously a function of message size. The vendor
may provide hints as to how to reduce message copies, for example, by posting
the receive before the send. Second order effects of message size may also affect
performance. Message lengths that are powers of two or cache-line size may
provide better performance than shorter lengths. Buffer alignment on word,
cache-line, or page may also affect performance. For small messages, context-
switch times may contribute to delays. Touching all the pages of the buffers
can reduce virtual memory effects. For shared media, contention may also affect
performance. There also may be some first-time effects that can be identified or
eliminated by performing some “warm up” tests before collecting performance
data.

There are of course other parameters of a message-passing system that may
affect performance for given applications. The aggregate bandwidth of the net-
work, the amount of concurrency, reliability, scalability, and congestion manage-
ment may be issues.

2.2. Measurement Methodology

To measure latency and bandwidth, we use a simple echo test between two ad-
jacent nodes. A receiving node simply echos back whatever it is sent, and the
sending node measures round-trip time. Times are collected for some number
of repetitions (100 to 1000) over various messages sizes (0 to 1,000,000 bytes).
Times can be collected outside the repetition loop as illustrated in Figure 2.1.
If the system has high resolution timers then a more detailed analyses can be
made by timing each send-receive pair. The time for each send-receive is saved
in a vector and printed at the end of the test. For small message sizes, clock
resolution may not be adequate, and clock jitter from time-sharing interrupts in
the underlying OS may be observed. Unidirectional transfer time, or latency,
is calculated as the minimum send-receive time (divided by two) for zero-length
messages. Data rate, or bandwidth, is calculated from the number of bytes sent
divided by half the round-trip time.

-4-

500 0.9
900 9.7

Echo Server
Initialize

Start timer

For N iterations

Send M bytes - - -
Recv M bytes e--

End DO

Stop timer

Print stats

1.2
12

Echo Client
Initialize

Do forever

-3 Recv M bytes
Send M bytes - -

End DO

Figure 2.1: Echo test pseudo-code.

2.3. Latency and Bandwidth

Latency and bandwidth were measured on a number of different multiproces-
sors. Each architecture is briefly summarized in Appendix A. Table 2.3 shows
the measured latency, bandwidth, and nli2 for nearest neighbor communication.
The table also includes the peak bandwidth as stated by the vendor. For compar-
ison, typical data rates and latencies are reported for several local area network
technologies.

Machine os
Convex SPPlOOO (PVM) SPP-UX 3.0.4.1
Convex SPPlOOO (sm 1-n) SPP-UX 3.0.4.1
Convex SPPlOOO (sm m-n) SPP-UX 3.0.4.1
Convex SPPl200 (PVM) SPP-UX 3.0.4.1
Convex SPPl200 (sm 1-n) SPP-UX 3.0.4.1
Convex SPPl200 (sm m-n) SPP-UX 3.0.4.1
Cray T3D (sm) MAX 1.2.0.2
Cray T3D (PVM) MAX 1.2.0.2
Intel Paragon OSF 1.0.4
Intel Paragon SUNMOS 1.6.2
Intel Delta NX 3.3.10
Intel iPSCl880 NX 3.3.2
Intel iPSCj2 NX 3.3.2
IBM SP-1 MPL
IBM SP-2 MPI
K S R l OSF Rl.2.2
Meiko CS2 (sm) Solaris 2.3
Meiko CS2 Solaris 2.3
nCUBE 2 Vertex 2.0
nCUBE 1 Vertex 2.3
NEC Cenju-3 Env. Re1 1.5d
NEC Cenju-3 (sm) Env. Re1 1.5d
SGI IRIX 6.1
TMC CM-5 CMMD 2.0
Ethernet TCPl IP
FDDI TCP/IP
ATM-100 TCPI IP

~~ "
Latency Bandwidth n1j2

n = 0 (ps) n = lo6 (MB/s) bytes

76 11 1000
2.5 82 1000
12 59 1000
63 15 1000

2.2 92 1000
11 71 1000
3 128 363

21 27 1502
29 154 7236
25 171 5856
77 8 900
65 3 340

370 2.8 1742
270 7 1904
35 35 3263
73 8 635
11 40 285
83 43 3559

154 1.7 333
384 0.4 148

13 900 40
34 25 400
10 64 799

Theoretical
Bandwidth

(MBls)
250
250
250
250
250
250
300
300
175
175
22
3
3

40
40
32
50
50

2.5
1

40
40

1200

900 3.5 I 12
.~~

- 5 -

Figure 2.2 details the message-passing times of various multiprocessors over
a range of message sizes. For small messages, the fixed overhead and latency
dominate transfer time. For large message, the transfer time rises linearly with
message size. Figure 2.3 illustrates the asymptotic behavior of bandwidth for
large message sizes. It is possible to reduce latency on the shared-memory ar-
chitectures by using shared-memory copy operations. These operations usually
involve only one-processor and assume that the message is ready to be retrieved
on the other processor. Figure 2.4 compares the message transfer times for the
shared-memory get and explicit message passing for the Cray T3D, Meiko, and
NEC. Current research in “active messages” is seeking ways to reduce message-
passing overhead by eliminating context switches and message copying. Finally,
Figure 2.5 graphically summarizes the communication performance of the various
multiprocessors in a two-dimensional message-passing metric space. The upper-
left region is the high performance area, lower performance and LAN networks
occupy the lower performance region in the lower right.

.

1-06 1
100000 i iPSC1860

s SP2
M Meiko

I I I I I I I

10 100 1000 10000 100000 1-06
Message size (bytes)

Figure 2.2: Message-passing transfer time in microseconds for various multipro-
cessors and messages sizes.

Since clusters of workstations on a network are often used as a virtual parallel
machine, it is interesting to compare latency and bandwidths for various local
area networks. Most communications over local area networks is done with the

.

- 6 -

100

10

C Convex
I iPSC1860
M Meiko
N NEC
P ParagonlSunrnos
s SP2

0.1 T T3D
X SGI

1

10 100 1000 10000 100000 le+06
Message size (bytes)

Figure 2.3: Message-passing bandwidth in megabytes/second for various mul-
tiprocessors and messages sizes.

TCP/IP protocols, though proprietary API’s may exist. We measured latency
for small messages using a UDP echo test. TCP bandwidth was measured at
the receiver with the ttcp program using 50,000 byte messages and 50,000 byte
window sizes. Some newer operating systems support even larger window sizes,
which could provide higher bandwidths. Most high-end workstations can transmit
network data at or near media data rates (e.g., 12 MB/second for FDDI). Data
rates of 73 MB/second for UDP have been reported between Crays on HiPPI
(and even over a wide-area using seven OC3’s) [l]. Latency and bandwidth
will depend as much.on the efficiency of the TCP/IP implementation as on the
network interface hardware and media. As with multiprocessors, the number of
times the message is touched is a critical parameter as is context-switch time.
Latencies for local area networks (Ethernet, FDDI, ATM, HiPPI) are typically
on the order of 500 ,us. For wide-area networks, latency is usually dominated by
distance (speed of light) and is on the order of tens of milliseconds.

Message passing is often the limiting factor in performance of a parallel com-
puter, so it is insightful to compare communication performance with computa-
tional performance for various architectures. The relative speed of computation
and communication can be used in choosing the granularity of parallelism in im-

-

- 7 -

M Meiko sharedmemory
m Meiko MPI
T Cray T3D shared memory
t Cray T3D PVM
N NEC shared memory
n NECMPI
C Convex SPP1200 shared memory
c Convex SPP1200 PVM

10 100 low 10000 1 ooO0o l M 6
Message size (bytes)

Figure 2.4: Transfer time in microseconds for both shared-memory operations
and explicit message passing.

plementing a given application, or in optimizing the movement of data between
processors or between levels of the memory hierarchy.

3. Computation and Communication

3.1. Performance

The performance of a computer is a complicated issue, a function of many in-
terrelated quantities. These quantities include the application, the algorithm,
the size of the problem, the high-level language, the implementation, the human
level of effort used to optimize the program, the compiler’s ability to optimize, the
age of the compiler, the operating system, the architecture of the computer, and
the hardware characteristics. The results presented for benchmark suites should
not be extolled as measures of total system performance (unless enough analysis
has been performed to indicate a reliable correlation of the benchmarks to the
workload of interest) but, rather, as reference points for further evaluations.

Computational performance is often measured in terms of Megaflops, mil-
lions of floating point operations per second (Mflop/s). We usually include both
additions and multiplications in the count of Mflop/s, and the reference to an

- 8 -

n 100
J?
W 9

Message-passing Space

T3D(3,128) 0 Paragon (25,171)

spp12uu~~%)(10,64)
oCS2(87,43)

cs2(11y4u) 0 Sp2(38,34)
C332
&1,27j@ SPPl200 (60,16)

Nl3C Cenju-3(40,13) 0 oCM5 (95,9)
0 Delta(70,8)

iPSC/860 (70,3) 0 0 iPSC/2(370,3)

0 Ncube2 (1549)
Ether(500,l) 1

1 10 100
Latency (us)

1000

Figure 2.5: Latency/bandwidth space €or 0-byte message (latency) and 1 M B
message (bandwidth). Block points represent shared-memory copy performance.

- 9 -

operation is assumed to be on 64-bit operands.
The manufacturer usually refers to peak performance when describing a sys-

tem. This peak performance is arrived at by counting the number of floating-point
additions and multiplications that can be performed in a period of time, usually
the cycle time of the machine. As an example, the IBM SP-1 processor, has a cy-
cle time of 62.5 MHz. During a cycle the results of the multiplyfadd instruction
can be completed giving:

2 operationsll cycle * 1 cyclefl6nsec = 125 Mflopfs.

Table 3.1 displays the performance for a single processor of various parallel
computers using the LINPACK Benchmark [2]. The floating point execution
rates have been converted to operations per cycle and also calculated the number
of cycles consumed, as overhead (latency), during communication. At one time,
a programmer had to go out of his way to code a matrix routine that would not
run at nearly top efficiency on any system with an optimizing compiler. Owing
to the proliferation of exotic computer architectures, this situation is no longer
true.

Table 3.1: Computation Performance.

Machine os
Convex SPPlOOO (PVM) SPP-UX 3.0.4.1
Convex SPPlOOO Ism 1-nb
Convex SPPlooo ism m-i)
Convex SPPl200 (PVM)
Convex SPPl200 (sm 1-n)
Convex SPPl200 (sm m-n)
Cray T3D (sm)
Cray T3D (PVM)
Intel Paragon
Intel Paragon
Intel Delta
Intel iPSC/880
Intel iPSC/2
IBM SP-1
IBM SP-2
KSR-1
Meiko CS2 (MPI)
Meiko CS2 (Em)
nCUBE 2
nCUBE 1
NEC Cenju-3
NEC Cenju-3(sm)
SGI Power Challenge
TMC CM-5

SPP-UX 3.0.4.1

MAX 1.2.0.2

OSF 1.0.4
SUNMOS 1.6.2
NX 3.3.10
NX 3.3.2
NX 3.3.2
MPL
MPI
OSF Rl.2.2
Solaris 2.3

Vertex 2.0
Vertex 2.3
Env Rev 1.5d
Env Rev 1.5d
IRIX 6.1
CMMD 2.0

Clock cycle
MHz (nsec)

100 (10)

100

150

50

40
40
16

62.5
66
40
90

20
8

75
75
90
32

3.2. The LINPACK Benchmark

(8.33)

(6.67)

(20)

(25)
(25)
(63)
(16)

(25)
(11.11)

(50)
(125)

(11.11)

(15.15)

(13.3)
(13.3)

(31.25)

Linpack 100
Mfls (opslcl)

48 (.48)

65

38

10

9.8
9.8
.37
38

130
15
24

-78
.10
23
23

126 -

Linpack 1000
Mfls (ops/cl)
123 (1.23)

123

94

34

34
34

104
236
31
97

2

39
39

308

-

-

-

Latencv
us (cl)
76 (7600)

2.6 (260)
11 (1080)
63 (756oj

2.2 (264)
11 (1260)
3 (450)

21 (3150)
29 (1450)
25 (1250)
77 (3080)
65 (2600)

370 (5920)
270 (16875)
35 (2310)
73 (2920)
83 (7470)

154 (3080)
384 (3072)
40 (3000)
34 (2550)

95 (3040)

11 (990)

10 (900)

The LINPACK benchmark features solving a system of linear equation, Az = b.
The benchmark results examined here are for two distinct benchmark problems.

- 10 -

The f i s t problem uses Fortran software from the LINPACK software package to
solve a matrix problem of order 100. That is, the matrix A has 100 rows and
columns and is said to be of size 100 x 100. The software used in this experiment
is based on two routines from the LINPACK collection: DGEFA and DGESL.
DGEFA performs the decomposition with partial pivoting, and DGESL uses that
decomposition to solve the given system of linear equations. Most of the time -
O(n3) floating-point operations - is spent in DGEFA. Once the matrix has been
decomposed, DGESL is used to find the solution; this requires O(n2) floating-
point operations.

DGEFA and DGESL in turn call three BLAS routines: DAXPY, IDAMAX,
and DSCAL. For the size 100 benchmark, the BLAS used are written in For-
tran. By far the major portion of time - over 90% at order 100 - is spent in
subroutine DAXPY. DAXPY is used to multiply a scalar, CY, times a vector, z,
and add the results to another vector, y. It is called approximately n2/2 times
by DGEFA and 2n times by DGESL with vectors of varying length. The state-
ment yi t yi + azi, which forms an element of the DAXPY operation, is
executed approximately n3/3 + n2 times, which gives rise to roughly (2/3)n3
floating-point operations in the solution. Thus, the benchmark requires roughly
2/3 million floating-point operations.

For the LINPACK 100 test, many processors achieve one floating point oper-
ation every four cycles, even though the process has the ability to deliver much
more than this. The primary reason for this lack of performance relates to the
poor compiler generated code and the algorithm’s ineffective use of the memory
hierarchy. There are a few exceptions, most notably the IBM SP-2’s processor.
The RS/6000-590 processor is able to achieve two floating point operations per
cycle for the LINPACK 100 test, because the compiler and the cache structure
work together. There are also examples of poor performance on some of the first
generation parallel machines, such as the nCUBE 1 and 2 and the Intel iPSC/2.
These processors are able to achieve only .01 to .04 floating point operations per
cycle.

In the second benchmark, the problem size is larger (matrix of order lOOO),
and modifying or replacing the algorithm and software is permitted to achieve as
high an execution rate as possible. (The optimized programs must still maintain
the same relative accuracy as standard techniques.) The algorithm used for the
n = 1000 problem makes better use of the memory hierarchy by utilizing the data
in cache. Thus, the hardware had more opportunity for reaching near-asymptotic
rates. Most of the processors achieve 70 to 80 % of their peak.

If we examine the algorithm used in LINPACK and look at how the data

- 11 -

\

are referenced, we see that at each step of the factorization process there are
operations that modify a full submatrix of data. This update causes a block of
data to be read, updated, and written back to central memory. The number
of floating-point operations is (2/3)n3, and the number of data references, both
loads and stores, is (2/3)n3. Thus, for every add/muZtipZy pair we must perform
a load and store of the elements, unfortunately obtaining no reuse of data. Even
though the operations are fully vectorized, there is a significant bottleneck in
data movement, resulting in poor performance. To achieve high-performance
rates, this operation-to-memory-reference rate must be higher.

Just as the operation-to-memory-reference rate af€ects performance at the in-
struction level, the computation-to-communication ratio for message passing will
affect application performance at a coarser level. The compiler and/or applica-
tion programmer can improve application performance by algorithm restructing
to increase data re-use and by reducing or pipelining message passing.

4. Future comparisons

In order that the reader might perform these same tests, both LINPACK and the
message-passing tests are available over the Internet.

4.1. Rules for Running the Tests

The message-passing test software intentionally has been kept simple so that it
will be easy for an experienced programmer to adapt the program, or parts of
it, to a specific architecture with only a modest effort. In running the tests, the
user is allowed to change the message passing calls to the appropriate call on the
specific system the program is to be run on. We have provided both PVM and
MPI [4] implementations in netlib.

4.2. Obtaining the Software

The software used to generate the data for this report can be obtained by sending
electronic mail to netZib@www.netZib.org . To receive the single-precision software
for this benchmark, in the mail message to netZib@www.netZib.org type send
commshar f r o m benchmark . To receive the double-precision software for this
benchmark, type send commshar f r o m benchmark .

A web browser can be used as well. With the url

http ://www. netlib. o rg/benchmark/ind ex. htmZ

click on “benchmark/comm.shar” .

I

mailto:netZib@www.netZib.org
mailto:netZib@www.netZib.org

- 12 -

5. References

[l] HPCwire No. 4912 12/2/94, 1994. Email exchange.

[2] J. Dongarra. Performance of various computers using standard linear equa-
tions software in a Fortran environment. Technical Report CS-89-85, Univer-
sity of Tennessee, 1995.

[3] T. H. Dunigan. Early experiences and performance of the intel paragon.
Technical report, Oak Ridge National Laboratory, 1993. ORNL/TM-12194.

[4] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard . International Journal of Supercomputer Applications and High Perf
ormance Computing, 8(3/4), 1994. Special issue on MPI. Also available elec-
tronically, the url is f t p : / / m . n e t l i b . o rg /mpi /mpi- repor t .ps .

[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: A Users’ Guide and Tutorial for Networked Parallel Computing. MIT
Press, 1994.

[6] Roger Hockney. The communication challenge for mpp. Parallel Computing,
20~389-398, 1994.

.

- 1 3 - ,

Appendix

A. Appendix: Machine Configurations for Echo Tests

A summary of the various architectures and configurations used when these per-
formance figures were measured follows. Unless otherwise noted, the test pro-
grams were compiled with cc -0.

The Convex SPPlOOO and SPP1200 consist of SCI-ring connected nodes
(160 MB/second). Each SPPlOOO node consists of eight 100 MHz HP PA RISC
7100 processors (120 MHz for the SPP1200) with a cross-bar memory interconnect
(250 MB/second). The tests were run under SPP-UX 3.0.4.1 and ConvexPVM
3.3.7.1.

The Cray T3D is 3-D-torus multiprocessor using the 150 MHz DEC Al-
pha processor. Communication channels have a peak rate of 300 MB/second.
Tests were performed using MAX 1.2.0.2. A special thanks to Majed Sidani of
Cray for running our communication tests on the T3D using PVM. The PVM
communication was with pvmqsend and pvm-precv.

The Intel iPSC/860 is Intel’s third generation hypercube. Each node has
a 40 MHz i860 with 8 KB cache and at least 8 MB of memory. Communica-
tion channels have a peak rate of 2.8 MB/second. Tests were performed using
NX 3.3.2. The Intel iPSC/2 uses the same communication hardware as the
iPSC/860 but uses 16 MHz 80386/7 for computation.

The Intel Delta is a 512-node mesh designed as a prototype for the Intel
Paragon family. Each node has a 40 MHz i860 with 8 KB cache and 16 MB
of memory. Communication channels have a peak rate of 22 MB/second. Tests
were performed using NX 3.3.10.

The Intel Paragon is a mesh-based multiprocessor. Each node has at least
two 50 MHz i86OXP processors with 16 KB cache and at least 16 MB of memory.
One processor is usually dedicated to communications. Communication channels
have a peak rate of 175 MB/second. Test were run under OSF 1.0.4 Server
1.3/WW48-02 and SUNMOS 1.6.2 (using NX message passing).

The IBM SP1 is an omega-switch-based multiprocessor using 62.5 MHz
RS6000 processors. Communication channels have a peak rate of 40 MB/second.
Tests were run using MPL.

The IBM SP2 is an omega-switch-based multiprocessor using 66 MHz RS6000
processors with L2 cache. Communication channels have a peak rate of 40
MB/second. Tests were run using MPI. The MPI communication was with
mpisend and mpirecv.

- 14-

The Kendall Square architecture is a shared-memory system'based on a
hierarchy of rings using a custom 20 MHz processor. Shared-memory latency
is about 7 ps, and bandwidth is about 32 MB/second. The message-passing
performance was measured using Pacific Northwest Laboratory's tcgmsg library
on one ring of a KSRl running OSF R1.2.2.

The communication topology is a fat tree with peak bandwidth of 50 MB/second.
The MPSC message-passing library was used for the echo tests. Meiko notes that
using point-to-point bidirectional channels in the echo test reduces latency from
82 microseconds to 14 microseconds. A special thanks to Jim Cownie of Meiko
for running our communication tests.

The Ncube hypercube processors are custom processors with hypercube com-
munication integrated into the chip. The first generation chip ran at 8 MHz, the
second generation chip ran at 20 MHz.

The NEC Cenju-3 results are from a 75 MHz VR44OOSC MIPS processor
with 32 KBytes of primary cache and 1 MByte of secondary cache using MPI
under the Cenju Environment Release 1.5d. Communication channels have a
peak rate of 40 MB/second through a multistage interconnection network.

The SGI results are from a 90 MHz Powerchallenge using MPI under IRIX
6.1. The SGI is a shared-memory multiprocessor using a 1.2 GB/s bus.

The TMC CM5 is hypertree multiprocessor using 32 MHz SPARC processors
with four vector units and 16 MB of memory per node. Communication channels
have a peak rate of 20 MB/second. Tests were run using the message passing
library CMMD 2.0.

The Meiko CS2 uses SPARC processors with 200 Mflop/s vector co-processors.

- 15 -

ORNL/TM-13006

INTERNAL DISTRIBUTION

1. T. S. Darland
2. J. J. Dongarra

3-7. T. H. Dunigan
8. G. A. Geist
9. K. L. Kliewer

10. C. E. Oliver
11. R. T. Primm

12-16. S. A. Raby
17-21. M. R. Leuze

22-26. R. F. Sincovec
27. P. H. Worley
28. Central Research Library
29. ORNL Patent Office
30. K-25 Appl Tech Library
31. Y-12 Technical Library
32. Laboratory Records - RC

33-34. Laboratory Records Department

EXTERNAL DISTRIBUTION

35. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

36. Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Hous-
ton, TX 77252-2189

37. Clive Baillie, Physics Department, Campus Box 390, University of Colorado, Boul-
der, CO 80309

38. Jesse L. Barlow, Department of Computer Science, 220 Pond Laboratory, Penn-
sylvania State University, University Park, PA 16802-6106

39. Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

40. Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South C a s Avenue, Argonne, IL 60439

41. Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkop-
ing, Sweden

42. Roger W. Brockett, Wang Professor EE and CS, Div. of Applied Sciences, 29
Oxford St., Harvard University, Cambridge, MA 02138

43. James C. Browne, Department of Computer Science, University of Texas, Austin,
TX 78712

44. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

45. Donald A. Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48109

46. Thomas A. Callcot, Director Science Alliance, 53 Turner House, University of
Tennessee, Knoxville, T N 37996

47. Ian Cavers, Department of Computer Science, University of British Columbia,
Vancouver, British Columbia V6T 1W5, Canada

- 16 -

48. Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

49. Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

50. Siddhartha Chatterjee, RIACS, MAIL STOP T045-1, NASA Ames Research Cen-
ter, Moffett Field, CA 94035-1000

51. Eleanor Chu, Department of Mathematics and Statistics, University of Guelph,
Guelph, Ontario, Canada N1G 2W1

52. Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

53. Tom Coleman, Department of Computer Science, Cornel1 University, Ithaca, NY
14853

54. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

55. Andy Conn, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights,
NY 10598

56. John M. Conroy, Supercomputer Research Center, 17100 Science Drive, Bowie,

57. Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

58. George Cybenko, Center for Supercomputing Research and Development, Univer-
sity of Illinois, 104 S. Wright Street, Urbana, IL 61801-2932

59. George J. Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

60. Tim A. Davis, Computer and Information Sciences Department, 301 CSE, Uni-
versity of Florida, Gainesville, FL 3261 1-2024

61. John J. Doming, Department of Nuclear Engineering Physics, Thornton Hall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

62. Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville,
T N 37235

63. Iain Duff, Numerical Analysis Group, Central Computing Department, Atlas Cen-
tre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 OQX, England

64. Patricia Eberlein, Department of Computer Science, SUNY at Buffalo, Buffalo,
NY 14260

65. Albert M. Erisman, Boeing Computer Services, Engineering Technology Applica-
tions, P.O. Box 24346, M/S 7L-20, Seattle, WA 981240346

66. Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra-
cuse University, Syracuse, NY 132444100

67. Robert E. F’underlic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

68. Professor Dennis B. Gannon, Computer Science Department, Indiana University,
Bloomington, IN 47401

MD 20715-4300

.

- 1 7 -

69. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
70. C. William Gear, NEC Research Institute, 4 Independence Way, Princeton, NJ

08540
71. W. Morven Gentleman, Division of Electrical Engineering, National Research

Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
KIA OR8

72. J. Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

73. John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto, CA 94304

74. Gene H. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

75. Joseph F. Grcar, Division 8245, Sandia National Laboratories, Livermore, CA
94551-0969

76. John Gustafson, Ames Laboratory, Iowa State University, Ames, IA 50011
77. Michael T. Heath, National Center for Supercomputing Applications, 4157 Beck-

man Institute, University of Illinois, 405 North Mathews Avenue, Urbana, IL
61801-2300

78. Don E. Heller, Center for Research on Parallel Computation, Rice University,
P.O. Box 1892, Houston, TX 77251

79. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

80. Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA
02142-1214

81. Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

82. Malvyn H. Kalos, Cornell Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901

83. Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Agonne, IL 60439

84. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, TX 77001

85. Richard Lau, Office of Naval Research, Code 1111MA, 800 Quincy Street, Boston,
Tower 1, Arlington, VA 22217-5000

86. Alan J. Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

87. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

88. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

89. Professor Peter Lax, Courant Institute for Mathematical Sciences, New York Uni-
versity, 251 Mercer Street, New York, NY 10012

- 18 -

90. John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,

91. Robert F. Lucas, Supercomputer Research Center, 17100 Science Drive, Bowie,

92. Franklin Luk, Electrical Engineering Department, Cornel1 University, Ithaca, NY

WA 98124-0346

MD 20715-4300

14853
93. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201

E. California Blvd., Pasadena, CA 91125
94. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,

Livermore, CA 94550

95. Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025
96. Dr. David Nelson, Director of Scientific Computing ER-7, Applied Mathematical

Sciences, Office of Energy Research, U. S. Department of Energy, Washington DC
20585

97. Professor V. E. Oberacker, Department of Physics, Vanderbilt University, Box
1807 Station B, Nashville, T N 37235

98. Dianne P. O’Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

99. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

100. Charles F. Osgood, National Security Agency, Ft. George G. Meade, MD 20755

101. Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,

102. Beresford N. Parlett, Department of Mathematics, University of California, Berke-
ley, CA 94720

103. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

104. Robert J. Plemmons, Departments of Mathematics and Computer Science, Box
7311, Wake Forest University, Winston-Salem, NC 27109

105. James Pool, Caltech Concurrent Supercomputing Facility, California Institute of
Technology, MS 158-79, Pasadena, CA 91125

106. Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

107. Yuanchang Qi, IBM European Petroleum Application Center, P.O. Box 585, N-
4040 Hafrsfjord, Norway

108. Giuseppe Radicati, IBM European Center for Scientific and Engineering Comput-
ing, via del Giorgione 159,I-00147 Roma, Italy

SC 29634-1906

109. Professor Daniel A. Reed, Computer Science Department, University of Illinois,
Urbana, IL 61801

110. John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 OQX, England

- 1 9 - I

111. John R. Rice, Computer Science Department, Purdue University, West Lafayette,

112. Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

113. Edward Rothberg, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

114. Joel Saltz, ICASE, MS 132C, NASA Langley Research Center, Hampton, VA
23665

115. Ahmed H. Sameh, Center for Supercomputer R&D, 469 CSRL 1308 West Main
St., University of Illinois, Urbana, IL 61801

116. Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffett
Field, CA 94035

117. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

IN 47907

118. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

119. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

120. Horst Simon, Mail Stop T045-1, NASA Ames Research Center, Moffett Field, CA
94035

121. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. 0. Box
1892, Houston, TX 77251

122. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

123. Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80307

124. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton,
VA 23665

125. Phuong Vu, Cray Research, Inc., 19607 Franz Rd., Houston, TX 77084
126. Robert Ward, Department of Computer Science, 107 Ayres Hall, University of

Tennessee, Knoxville, T N 37996-1301

127. Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O. Box
1663 MS-265, Los Alamos, NM 87545

128. David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

129. Office of Assistant Manager for Energy Research and Development, US. Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, T N
37831-8600

130-131. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, T N 37831

