54 research outputs found

    Development of an ERL RF Control System

    Get PDF
    The Mainz Energy-recovering Superconducting Accelerator (MESA), currently under construction at Johannes Gutenberg-Universität Mainz, requires a newly designed digital low-level radio frequency (LLRF) system. Challenging requirements have to be fulfilled to ensure high beam quality and beam parameter stability. First, the layout with two recirculations and the requirements will be shown from an LLRF point of view. Afterwards, different options for the control system are presented. This includes the generator-driven system, the self-excited loop and classical PID controller as well as more sophisticated solutions

    Longitudinal Beam Stabilization at FAIR by Means of a Derivative Estimation

    Get PDF
    During acceleration in SIS18/SIS100 at GSI/FAIR longitudinal beam-oscillations are expected to occur. To reduce emittance blow-up, dedicated LLRF beam feedback systems are planned. To date longitudinal beam oscillations have been damped in machine experiments with a finite-impulse-response (FIR) filter controller with 3 filter taps. An alternative approach implementing the FIR filter as a derivative estimator controller is simulated and tested. This approach shares the same controller topology and can therefore be easily integrated in the system. It exploits the fact that the sampling rate of the feedback hardware is considerably higher than the frequency of the beam oscillations. It is therefore capable of damping oscillations without overshoot within one oscillation period

    Tuning of 3-tap Bandpass Filter During Acceleration for Longitudinal Beam Stabilization at FAIR

    Get PDF
    During acceleration in the heavy-ion synchrotrons SIS18/SIS100 at GSI/FAIR longitudinal beam oscillations are expected to occur. To reduce longitudinal emittance blowup, dedicated LLRF beam feedback systems are planned. To date, damping of longitudinal beam oscillations has been demonstrated in SIS18 machine experiments with a 3-tap filter controller (e.g. [1]), which is robust in regard to control parameters and also to noise. On acceleration ramps the control parameters have to be adjusted to the varying synchrotron frequency. Previous results from beam experiments at GSI indicate that a proportional tuning rule for one parameter and an inversely proportional tuning rule for a second parameter is feasible, but the obtained damping rate may not be optimal for all synchrotron frequencies during the ramp. In this work, macro-particle simulations are performed to evaluate, whether it is sufficient to adjust the control parameters proportionally (inversely proportionally) to the change in the linear synchrotron frequency, or if it is necessary to take more parameters, such as bunch-length and synchronous phase, into account to achieve stability and a considerable high damping rate for excited longitudinal dipole beam oscillations. This is done for single- and dual-harmonic acceleration ramps

    Input Signal Generation for Barrier Bucket RF Systems at GSI

    Get PDF
    At the GSI facility in Darmstadt, Germany, Barrier Bucket RF systems are currently designed for the SIS 100 synchrotron (part of the future FAIR facility) and the Experimental Storage Ring (ESR). The purpose of these systems is to provide single sine voltage pulses at the cavity gap. Due to the high requirements regarding the gap signal quality, the calculation of the pre-distorted input signal plays a major role in the system development. A procedure to generate the input signal based on the dynamic properties in the linear region of the system has been developed and tested at a prototype system. It was shown that this method is able to generate single sine gap signals of high quality in a wide voltage range. As linearity can only be assumed up to a certain magnitude, nonlinear effects limit the quality of the output signal at very high input levels. An approach to overcome this limit is to extend the input signal calculation to a nonlinear model of the system. In this contribution, the current method to calculate the required input signal is presented and experimental results at a prototype system are shown. Additionally, first results in the nonlinear region are presented

    Test Setup for Automated Barrier Bucket Signal Generation

    Get PDF
    For sophisticated beam manipulation several ring accelerators at FAIR and GSI like the main synchrotron SIS100 and the ESR will be equipped with barrier bucket systems. Hence, the associated LLRF has to be applicable to different RF systems, with respect to the cavity layout and the power amplifier used, as well as to variable repetition rates and amplitudes. Since already the first barrier bucket pulse of a long sequence has to meet certain minimum demands, an open-loop control on the basis of calibration data is foreseen. Closed-loop control is required to improve the signal quality during a sequence of pulses and to adapt to changing conditions like temperature drifts. A test setup was realized that allows controlling the signal generator, reading out the oscilloscope as well as processing the collected data. Frequency and time domain methods can be implemented to approach the dynamics of the RF system successively and under operating conditions, i.e. generating single sine pulses. The setup and first results from measurements are presented as a step towards automated acquisition of calibration data and iterative improvement of the same

    Modeling and Simulation of Broadband RF Cavities in PSpice

    Get PDF
    Barrier bucket systems are planned for the SIS100 Synchrotron (part of the future accelerator facility FAIR) and the ESR storage ring to facilitate several longitudinal beam manipulations [9] [15]. In order to achieve a single-sine gap signal of the desired amplitude and quality, effects in the linear and nonlinear region of the RF systems have to be investigated and included in the design of the overall system. Therefore, the cavities and the amplifier stages are to be modeled in PSpice. In this contribution, a cavity model will be presented. In a first step, a model for the magnetic alloy (MA) ring cores, which highly account for the properties of the cavity, has been found based on measurement data. In a second step, the future setup of the cavity is systematically created using the MA ring core models. The model of the cavity allows simulations in frequency domain as well as time domain. The results show good agreement with former measurements

    Prototype Results of the ESR Barrier-Bucket System

    Get PDF
    The experimental storage ring (ESR), operated at the GSI facility in Darmstadt, Germany, allows experiments with a variety of ion species. In combination with the existing electron cooler, its RF cavities have been used to demonstrate longitudinal beam accumulation in order to increase the beam intensity. Limitations of the existing narrow-band cavities led to the development of a magnetic alloy (MA) based broad-band cavity for the generation of Barrier-Bucket signals. The application of a pre-distortion method demands high linearity of the driver amplifier and highlights the importance of its selection process. In this contribution, the cavity and amplifier system design is described and data measured at a prototype system are presented

    On the Impact of Empty Buckets on the Ferrite Cavity Control Loop Dynamics in High Intensity Hadron Synchrotrons

    Get PDF
    Due to technical reasons two of ten buckets have to stay empty in the planned SIS100 synchrotron at the GSI Helmholtzzentrum für Schwerionenforschung. The planned low level RF control systems consist of linear P and PI type controllers. These are responsible to maintain a desired phase and amplitude of the gap voltage. In addition the cavity is controlled to follow a prescribed resonance frequency ramp. In SIS100 the acceleration will be performed by ferrite cavities with comparatively small quality factors. Therefore, effects resulting from transient beam loading have to be expected. Influences due to empty buckets are analysed in the frequency domain and particle tracking simulations are carried out to estimate the effect on the overall system with particular consideration of emittance growth and particle loss

    Modeling of broadband cavities in PSpice

    Get PDF
    PSpice models for the SIS100 barrier bucket cavity and the ESR barrier bucket cavity have been created and compared with measurements

    Design and tuning of digital filters for RF feedback loops in heavy-ion synchrotrons

    Get PDF
    Damping of longitudinal coherent bunched-beam oscillations are needed in SIS18 and SIS100 to stabilize the beam, prevent emittance growth and keep beamloss low during acceleration. In last year’s work several approaches of digital filters for beam-phase control have been examined. An FIR (finite impulse response) filter with 3 taps, cf. [1], has been successfully used at GSI in several machine experiments for a beam- phase control system and a longitudinal feedback system. In principle, much more taps can be used, but it is still an open topic, whether more complex filters will lead to better results. Therefore, a detailed control-theoretic study has been started and the progress is reported in the following
    • …
    corecore