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Abstract. During acceleration in the heavy-ion synchrotrons SIS18/SIS100 at GSI/FAIR
longitudinal beam oscillations are expected to occur. To reduce longitudinal emittance blow-
up, dedicated LLRF beam feedback systems are planned. To date, damping of longitudinal
beam oscillations has been demonstrated in SIS18 machine experiments with a 3-tap filter
controller (e.g. [1]), which is robust in regard to control parameters and also to noise. On
acceleration ramps the control parameters have to be adjusted to the varying synchrotron
frequency. Previous results from beam experiments at GSI indicate that a proportional tuning
rule for one parameter and an inversely proportional tuning rule for a second parameter is
feasible, but the obtained damping rate may not be optimal for all synchrotron frequencies
during the ramp. In this work, macro-particle simulations are performed to evaluate, whether
it is sufficient to adjust the control parameters proportionally (inversely proportionally) to the
change in the linear synchrotron frequency, or if it is necessary to take more parameters, such
as bunch-length and synchronous phase, into account to achieve stability and a considerable
high damping rate for excited longitudinal dipole beam oscillations. This is done for single- and
dual-harmonic acceleration ramps.

1. Introduction
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Figure 1. Control loop

Figure 1 shows the simplified topology of the beam phase control loop used in the machine
and in the macro particle simulations. Starting from beam dynamics the beam phase ¢p is
measured with respect to a reference signal from a direct digital synthesizer (DDS). The beam
phase is processed by a finite impulse response (FIR) filter, which is realised as bandpass filter
and followed by an integrator. The correction signal Apcorr is subtracted from a set value gt 1,
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or doubled and substracted from a set value gt 2 for the double harmonic cavity. The result
is forwarded to the cavity dynamics, which model the phase response of the cavities including
the so-called cavity synchronisation loop. They are modeled as first order low-pass transfer
functions. In single-harmonic operation only the cavity with h; and T; = 10us is active. In
dual-harmonic operation a second cavity with Ty = 20us and doubled frequency he = 2h; is
added. The sample time of the DSP-system is Tg = 3.22us and the transport delay time is
Tp = 10us.

2. FIR Filter configuration
The FIR filter used in the parameter analysis is introduced in [1] and is given by:

1 1 1
Yp = _pr + §prm - prﬁm (1)

Due to its symmetric form and zero-sum of coefficients, it is a bias free digital bandpass filter.
The index p corresponds to the actual measurement. The spacing m, to take values from the
past, is given by ;
R

o fsyn "X (2)
where fr is the revolution frequency of the particles, fsy, the linear synchrotron frequency and
x one of the two tuning parameters in the parameter analysis. It shifts the center frequency of
the bandpass filter.
After filtering, the value y, can be applied as frequency shift Aweorr to the cavities, or it can be
summed up and be applied as phase shift Apcor as it is treated in the simulation. The phase
shift Apcorr is multiplied by a gain factor K, which is given by

K= -2 {4, -Ts-k (3)
where k is the second tuning parameter for the parameter analysis.

3. Simulation setup

For most experiments the synchrotron is designed to obtain a high throughput of particles.
Therefore, the cycle time of acceleration ramps have to be short, and particle buckets should be
filled to a maximum amount of ions. The requirements can introduce a source of longitudinal
dipole excitation. The main goal is to keep longitudinal RMS-emittance low, which is the type
of emittance this work always refers to. Another constraint is a fast damping rate, which in

Table 1. Parameter specifications for parameter scan.

Single harmonic Dual harmonic

Range of k [0.0,0.4] [0.0,0.2]
Stepsize Ak 0.02 0.01
Range of x [0.05,1.2] [0.05,1.0]
Stepsize Ay 0.05 0.05
Tnitial 115°, 160°, 141°, 177°
Bunch-width (40) 200°, 239° 203°, 230°
Types of Ramps 7 [2, 3] 3 (3]
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some cases has led to a higher increase in RMS-emittance in the simulations of this work. This
observation is particularly relevant in case beam oscillations are excited continuously throughout
the ramp.

To cover all the different working conditions of the ramps under investigation, each ramp was
divided into multiple sections. The sections are 3 linear synchrotron oscillations apart and 6
synchrotron oscillations long, so that neighbouring sections overlap each other. At the beginning
of each section a parameter scan according to Table 1 was carried out, which is more than 400
simulations per section.

The RMS-emittance per particle is recorded before the distortion is applied and also taken a
second time after 6 synchrotron oscillations. To obtain a more interpretable result, the emittance
increase of every measurement is compared to the emittance increase without feedback. Negative
relative emittance increase is possible when there is particle loss and relatively more particles
on the edge of bunches are lost so the bunch size shrinks as a whole.

A gap voltage phase shift of 10° is used as distortion. The settling time is reached, when the
beam-phase stays within an interval of +1.25° in single harmonic operation and within 4+2° in
double harmonic operation. The settling time result of the simulation is discretized in steps of
0.5 oscillation periods.

The plots for RMS-emittance increase (Fig. 2 and 4) and settling times (Fig. 3 and 5) show a
summary over all ramp-sections with all four bunch sizes. The ”Constant Tuning Rule” results
have the same x and k over the acceleration ramp. For the ”Minimum Value” results, the best
result of each parameter scan was used. The parameters change over the acceleration ramp and
are often different for emittance increase and settling time in one ramp section.

The emittance increase for the case without feedback is always 100% and is therefore not shown.
The summarized results are diagrammed as boxplots with whiskers of a maximum length of 1.5
times the interquartile range.

4. Tuning rule for single harmonic operation

For the single-harmonic case, a constant tuning rule with £ = 0.32 and x = 1.0 was chosen. The
parameter regions for lowest emittance gain and a small settling time share the same parameter
regions. As shown in Fig. 3, the median of the RMS-emittance is around 10%, which indicates
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Figure 2. Settling time for single harmonic Figure 3. Relative RMS-emittance increase

operation: On the left is the constant tuning for single harmonic operation in relation to

rule, in the middle are minimum settling times operation without feedback: On the left is the

and on the right results without feedback. constant tuning rule, on the right the minimum
emittance increase obtained.
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that the controller is often fast enough, so that only minor filamentation occurs. Sometimes
there is also particle loss. The values above 100% belong to the two larger bunch sizes at
the beginning of the ramps, where ramp parameters are changing fast and particles get lost.
Nevertheless the controller does not get unstable. The median for the minimum values obtained
is only about 10% lower. Thus the performance of the controller is reasonable.

The median of the settling time shown in Fig. 2 is about 1.5 to 2 oscillation periods. Most
values are 0.5 oscillation periods larger than the minimum value obtained. Compared to the
case without feedback, the settling often is more than halved.

The tuning parameters are similar to the parameters of a linear quadratic controller for linear
bunches [4] (koptstat = 0.32 and Xopt stat = 0.97), which indicates that a bunch on a ramp shows
linear behaviour regarding bunch phase feedback.

5. Tuning rules for dual harmonic operation

In dual harmonic operation, the parameter regions for reduced emittance increase and low
settling time tend to be the same for larger bunch lengths. For small bunch lengths a smaller gain
modification k leads to smaller settling times, but larger emittance increase. As a compromise
the parameter set [x,k] = [0.6,0.15] is chosen in favour of larger bunches.

Applied on all 3 ramps, with all bunch lengths, Fig. 4 shows that the median of emittance
increase is halved compared to the case of no feedback. Almost all values are between 0% and
nearly 100%. The median of minimum emittance increase is about 10% lower. The constant
tuning rule is a reasonable result.

Fig. 5 shows the settling time of the bunch barycenter. The constant tuning rule approximately
halves the settling time, compared to the case without feedback. There are filter configurations
that even lead to better results of about one oscillation period. Nevertheless, the parameter
configurations for an improved settling time usually also show a higher emittance increase.
Besides, the parameters then also vary over the acceleration ramp.

Compared to [5], where optimal simulation parameters for stationary operation are given by
Xopt,stat =~ 1.0 and kopestat =~ 0.3, the parameters are reduced by 40% for x and 50% for k
respectively.
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Figure 4. Relative RMS-emittance increase Figure 5. Settling time for dual harmonic
for dual-harmonic case in relation to operation case: On the left is the constant tuning rule,
without feedback: On the left is the constant in the middle are minimum settling times and
tuning rule, on the right the minimum on the right results without feedback.
emittance increase obtained.
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6. Additional notes

Most importantly the controller design has to provide stability throughout a whole acceleration
cycle, which is the case for all studied ramps.

The constant tuning rules for & and x imply a proportional tuning rule for K and an inversely
proportional tuning rule for m regarding the linear synchrotron frequency fsyn.

A further remark is that the distortion can be considered a worst case for this type of FIR filter
and will typically be much smaller. It is chosen to investigate the damping potential of the
controller. But it also introduces an oscillation with a high amplitude (£10°). The controller
needs about one oscillation period to unfold its full performance. A slowly increasing oscillation
amplitude of less than 2° per oscillation should lead to even better results for the FIR filter.
The simulations also show that without feedback, every distortion leads to bunch-phase damping
through filamentation, which will cause emittance-growth. With feedback, oscillations can be
damped with nearly no emittance increase when the oscillation amplitude stays below 3°.

7. Conclusions and outlook

The FIR filter implemented as bandpass-filter can be used to strongly damp beam-phase
oscillations. This holds for single- and dual-harmonic operation. A constant tuning rule for
x and k is sufficient for stable operation, although the separatrix and therewith the shape of
the bunch changes in different ways from ramp to ramp. Despite of the differences, additional
parameters like bunch-length and synchronous phase are not necessary to get reasonable results.
In the future the results of the simulations have to be tested in experiments.
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