276 research outputs found

    Berry Phase in Cuprate Superconductors

    Full text link
    Geometrical Berry phase is recognized as having profound implications for the properties of electronic systems. Over the last decade, Berry phase has been essential to our understanding of new materials, including graphene and topological insulators. The Berry phase can be accessed via its contribution to the phase mismatch in quantum oscillation experiments, where electrons accumulate a phase as they traverse closed cyclotron orbits in momentum space. The high-temperature cuprate superconductors are a class of materials where the Berry phase is thus far unknown despite the large body of existing quantum oscillations data. In this report we present a systematic Berry phase analysis of Shubnikov - de Haas measurements on the hole-doped cuprates YBa2_2Cu3_3Oy_{y}, YBa2_2Cu4_4O8_8, HgBa2_2CuO4+δ_{4 + \delta}, and the electron-doped cuprate Nd2−x_{2-x}Cex_xCuO4_4. For the hole-doped materials, a trivial Berry phase of 0 mod 2π2\pi is systematically observed whereas the electron-doped Nd2−x_{2-x}Cex_xCuO4_4 exhibits a significant non-zero Berry phase. These observations set constraints on the nature of the high-field normal state of the cuprates and points towards contrasting behaviour between hole-doped and electron-doped materials. We discuss this difference in light of recent developments related to charge density-wave and broken time-reversal symmetry states.Comment: new version with added supplementary informatio

    Quantum critical scaling at the edge of Fermi liquid stability in a cuprate superconductor

    Full text link
    In the high temperature cuprate superconductors, the pervasiveness of anomalous electronic transport properties suggests that violation of conventional Fermi liquid behavior is closely tied to superconductivity. In other classes of unconventional superconductors, atypical transport is well correlated with proximity to a quantum critical point, but the relative importance of quantum criticality in the cuprates remains uncertain. Here we identify quantum critical scaling in the electron-doped cuprate material La2-xCexCuO4 with a line of quantum critical points that surrounds the superconducting phase as a function of magnetic field and charge doping. This zero-temperature phase boundary, which delineates a metallic Fermi liquid regime from an extended non-Fermi liquid ground state, closely follows the upper critical field of the overdoped superconducting phase and gives rise to an expanse of distinct non Fermi liquid behavior at finite temperatures. Together with signatures of two distinct flavors of quantum fluctuations, this suggests that quantum criticality plays a significant role in shaping the anomalous properties of the cuprate phase diagram.Comment: 16 pages, 3 figures + supplementary materia

    Onset of a boson mode at superconducting critical point of underdoped YBa2Cu3Oy

    Full text link
    The thermal conductivity κ\kappa of underdoped \Y was measured in the T→0T \to 0 limit as a function of hole concentration pp across the superconducting critical point at pSCp_{SC} = 5.0%. ``Time doping'' was used to resolve the evolution of bosonic and fermionic contributions with high accuracy. For p⩽pSCp \leqslant p_{SC}, we observe an additional T3T^3 contribution to κ\kappa which we attribute to the boson excitations of a phase with long-range spin or charge order. Fermionic transport, manifest as a linear term in κ\kappa, is seen to persist unaltered through pSCp_{SC}, showing that the state just below pSCp_{SC} is a thermal metal. In this state, the electrical resistivity varies as log(1/T)(1/T) and the Wiedemann-Franz law is violated

    Two types of nematicity in the phase diagram of the cuprate superconductor YBa2_2Cu3_3Oy_y

    Full text link
    Nematicity has emerged as a key feature of cuprate superconductors, but its link to other fundamental properties such as superconductivity, charge order and the pseudogap remains unclear. Here we use measurements of transport anisotropy in YBa2_2Cu3_3Oy_y to distinguish two types of nematicity. The first is associated with short-range charge-density-wave modulations in a doping region near p=0.12p = 0.12. It is detected in the Nernst coefficient, but not in the resistivity. The second type prevails at lower doping, where there are spin modulations but no charge modulations. In this case, the onset of in-plane anisotropy - detected in both the Nernst coefficient and the resistivity - follows a line in the temperature-doping phase diagram that tracks the pseudogap energy. We discuss two possible scenarios for the latter nematicity.Comment: 8 pages and 7 figures. Main text and supplementary material now combined into single articl

    Doped carrier formulation of the t-J model: the projection constraint and the effective Kondo-Heisenberg lattice representation

    Full text link
    We show that the recently proposed doped carrier Hamiltonian formulation of the t-J model should be complemented with the constraint that projects out the unphysical states. With this new important ingredient, the previously used and seemingly different spin-fermion representations of the t-J model are shown to be gauge related to each other. This new constraint can be treated in a controlled way close to half-filling suggesting that the doped carrier representation provides an appropriate theoretical framework to address the t-J model in this region. This constraint also suggests that the t-J model can be mapped onto a Kondo-Heisenberg lattice model. Such a mapping highlights important physical similarities between the quasi two-dimensional heavy fermions and the high-Tc_c superconductors. Finally we discuss the physical implications of our model representation relating in particular the small versus large Fermi surface crossover to the closure of the lattice spin gap.Comment: corrected and enlarged versio

    Nodes in the gap structure of the iron-arsenide superconductor Ba(Fe_{1-x}Co_x)_2As_2 from c-axis heat transport measurements

    Full text link
    The thermal conductivity k of the iron-arsenide superconductor Ba(Fe_{1-x}Co_x)_2As_2 was measured down to 50 mK for a heat current parallel (k_c) and perpendicular (k_a) to the tetragonal c axis, for seven Co concentrations from underdoped to overdoped regions of the phase diagram (0.038 < x < 0.127). A residual linear term k_c0/T is observed in the T = 0 limit when the current is along the c axis, revealing the presence of nodes in the gap. Because the nodes appear as x moves away from the concentration of maximal T_c, they must be accidental, not imposed by symmetry, and are therefore compatible with an s_{+/-} state, for example. The fact that the in-plane residual linear term k_a0/T is negligible at all x implies that the nodes are located in regions of the Fermi surface that contribute strongly to c-axis conduction and very little to in-plane conduction. Application of a moderate magnetic field (e.g. H_c2/4) excites quasiparticles that conduct heat along the a axis just as well as the nodal quasiparticles conduct along the c axis. This shows that the gap must be very small (but non-zero) in regions of the Fermi surface which contribute significantly to in-plane conduction. These findings can be understood in terms of a strong k dependence of the gap Delta(k) which produces nodes on a Fermi surface sheet with pronounced c-axis dispersion and deep minima on the remaining, quasi-two-dimensional sheets.Comment: 12 pages, 13 figures

    Fermi-surface reconstruction and two-carrier model for the Hall effect in YBa2Cu4O8

    Full text link
    Pulsed field measurements of the Hall resistivity and magnetoresistance of underdoped YBa2Cu4O8 are analyzed self-consistently using a simple model based on coexisting electron and hole carriers. The resultant mobilities and Hall numbers are found to vary markedly with temperature. The conductivity of the hole carriers drops by one order of magnitude below 30 K, explaining the absence of quantum oscillations from these particular pockets. Meanwhile the Hall coefficient of the electron carriers becomes strongly negative below 50 K. The overall quality of the fits not only provides strong evidence for Fermi-surface reconstruction in Y-based cuprates, it also strongly constrains the type of reconstruction that might be occurring.Comment: 5 pages, 4 figures, updated after publication in Physical Review B (Rapid Communication

    Doping dependence of heat transport in the iron-arsenide superconductor Ba(Fe1−x_{1-x}Cox_x)2_2As2_2: from isotropic to strongly kk-dependent gap structure

    Get PDF
    The temperature and magnetic field dependence of the in-plane thermal conductivity κ\kappa of the iron-arsenide superconductor Ba(Fe1−x_{1-x}Cox_x)2_2As2_2 was measured down to T≃50T \simeq 50 mK and up to H=15H = 15 T as a function of Co concentration xx in the range 0.048 ≤x≤ \leq x \leq 0.114. In zero magnetic field, a negligible residual linear term in κ/T\kappa/T as T→0T \to 0 at all xx shows that there are no zero-energy quasiparticles and hence the superconducting gap has no nodes in the abab-plane anywhere in the phase diagram. However, the field dependence of κ\kappa reveals a systematic evolution of the superconducting gap with doping xx, from large everywhere on the Fermi surface in the underdoped regime, as evidenced by a flat κ(H)\kappa (H) at T→0T \to 0, to strongly kk-dependent in the overdoped regime, where a small magnetic field can induce a large residual linear term, indicative of a deep minimum in the gap magnitude somewhere on the Fermi surface. This shows that the superconducting gap structure has a strongly kk-dependent amplitude around the Fermi surface only outside the antiferromagnetic/orthorhombic phase.Comment: version accepted for publication in Physical Review Letters; new title, minor revision, revised fig.1, and updated reference
    • …
    corecore