28 research outputs found

    A geometric construction of traveling waves in a bioremediation.

    Get PDF
    Bioremediation is a promising technique for cleaning contaminated soil. We study an idealized bioremediation model involving a substrate (contaminant to be removed), electron acceptor (added nutrient), and microorganisms in a one-dimensional soil column. Using geometric singular perturbation theory, we construct traveling waves (TW) corresponding to motion of a biologically active zone, in which the microorganisms consume both substrate and acceptor. For certain values of the parameters, the traveling waves exist on a three-dimensional slow manifold within the five-dimensional phase space. We prove persistence of the slow manifold under perturbation by controlling the nonlinearity via a change of coordinates, and we construct the wave in the transverse intersection of appropriate stable and unstable manifolds in this slow manifold. We study how the TW depends on the half saturation constants and other parameters and investigate numerically a bifurcation in which the TW loses stability to a periodic wav

    Nonlinear asymptotic stability of the semi-strong pulse dynamics in a regularized Gierer-Meinhardt model

    Get PDF
    We use renormalization group (RG) techniques to prove the nonlinear asymptotic stability for the semi-strong regime of two-pulse interactions in a regularized Gierer-Meinhardt system. In the semi-strong limit the strongly localized activator pulses interact through the weakly localized inhibitor, the interaction is not tail-tail as in the weak interaction limit, and the pulses change amplitude and even stability as their separation distance evolves on algebraically slow time scales. The RG approach employed here validates the interaction laws of quasi-steady pulse patterns obtained formally in the literature, and establishes that the pulse dynamics reduce to a closed system of ordinary differential equations for the activator pulse locations. Moreover, we fully justify the reduction to the nonlocal eigenvalue problem (NLEP) showing the large difference between the quasi-steady NLEP operator and the operator arising from linearization about the pulse is controlled by the resolven

    Blooming in a non-local, coupled phytoplankton–nutrient model

    Get PDF
    Recently, it has been discovered that the dynamics of phytoplankton concentrations in an ocean exhibit a rich variety of patterns, ranging from trivial states to oscillating and even chaotic behavior [J. Huisman, N.N. Pham Thi, D.M. Karl, and B.P. Sommeijer (2006), Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum, Nature 439 322-325]. This paper is a first step towards understanding the bifurcational structure associated to non-local, coupled phytoplankton-nutrient models as studied in that paper. Its main subject is the linear stability analysis that governs the occurrence of the first nontrivial stationary patterns, the `deep chlorophyll maxima' (DCMs) and the `benthic layers' (BLs). Since the model can be scaled into a system with a natural singularly perturbed nature, and since the associated eigenvalue problem decouples into a problem of Sturm-Liouville type, it is possible to obtain explicit (and rigorous) bounds on, and accurate approximations of, the eigenvalues. The analysis yields bifurcation-manifolds in parameter space, of which the existence, position and nature are confirmed by numerical simulations. Moreover, it follows from the simulations and the results on the eigenvalue problem that the asymptotic linear analysis may also serve as a foundation for the secondary bifurcations, such as the oscillating DCMs, exhibited by the model

    Stability and Fluctuations in Complex Ecological Systems

    Full text link
    From 08-12 August, 2022, 32 individuals participated in a workshop, Stability and Fluctuations in Complex Ecological Systems, at the Lorentz Center, located in Leiden, The Netherlands. An interdisciplinary dialogue between ecologists, mathematicians, and physicists provided a foundation of important problems to consider over the next 5-10 years. This paper outlines eight areas including (1) improving our understanding of the effect of scale, both temporal and spatial, for both deterministic and stochastic problems; (2) clarifying the different terminologies and definitions used in different scientific fields; (3) developing a comprehensive set of data analysis techniques arising from different fields but which can be used together to improve our understanding of existing data sets; (4) having theoreticians/computational scientists collaborate closely with empirical ecologists to determine what new data should be collected; (5) improving our knowledge of how to protect and/or restore ecosystems; (6) incorporating socio-economic effects into models of ecosystems; (7) improving our understanding of the role of deterministic and stochastic fluctuations; (8) studying the current state of biodiversity at the functional level, taxa level and genome level.Comment: 22 page

    The dynamics of modulated wave trains.

    Get PDF
    We investigate the dynamics of weakly-modulated nonlinear wave trains. For reaction-diffusion systems and for the complex Ginzburg--Landau equation, we establish rigorously that slowly varying modulations of wave trains are well approximated by solutions to Burgers equation over the natural time scale. In addition to the validity of Burgers equation, we show that the viscous shock profiles in Burgers equation for the wave number can be found as genuine modulated waves in the underlying reaction-diffusion system. In other words, we establish the existence and stability of waves that are time-periodic in appropriately moving coordinate frames which separate regions in physical space that are occupied by wave trains of different, but almost identical, wave number. The speed of these shocks is determined by the Rankine--Hugoniot condition where the flux is given by the nonlinear dispersion relation of the wave trains. The group velocities of the wave trains in a frame moving with the interface are directed toward the interface. Using pulse-interaction theory, we also consider similar shock profiles for wave trains with large wave number, that is, for an infinite sequence of widely separated pulses. The results represented here are then applied to the FitzHugh--Nagumo equation and to hydrodynamic stability problem

    Pattern formation in the one-dimensional Gray-Scott model

    Get PDF
    View the table of contents for this issue, or go to the journal homepage for mor
    corecore