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Nonlinear asymptotic stability of the semi-strong
pulse dynamics in a regularized Gierer-Meinhardt
model

ABSTRACT
We use renormalization group (RG) techniques to prove the nonlinear asymptotic stability for
the semi-strong regime of two-pulse interactions in a regularized Gierer-Meinhardt system. In
the semi-strong limit the strongly localized activator pulses interact through the weakly localized
inhibitor, the interaction is not tail-tail as in the weak interaction limit, and the pulses change
amplitude and even stability as their separation distance evolves on algebraically slow time
scales. The RG approach employed here validates the interaction laws of quasi-steady pulse
patterns obtained formally in the literature, and establishes that the pulse dynamics reduce to a
closed system of ordinary differential equations for the activator pulse locations. Moreover, we
fully justify the reduction to the nonlocal eigenvalue problem (NLEP) showing the large
difference between the quasi-steady NLEP operator and the operator arising from linearization
about the pulse is controlled by the resolvent.
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NONLINEAR ASYMPTOTIC STABILITY OF THE SEMI-STRONG PULSE DYNAMICS

IN A REGULARIZED GIERER-MEINHARDT MODEL

ARJEN DOELMAN∗, TASSO J. KAPER† , AND KEITH PROMISLOW‡

Abstract. We use renormalization group (RG) techniques to prove the nonlinear asymptotic stability for the semi-strong
regime of two-pulse interactions in a regularized Gierer-Meinhardt system. In the semi-strong limit the strongly localized
activator pulses interact through the weakly localized inhibitor, the interaction is not tail-tail as in the weak interaction limit,
and the pulses change amplitude and even stability as their spearation distance evolves on algebraically slow time scales. The
RG approach employed here validates the interaction laws of quasi-steady pulse patterns obtained formally in the literature, and
establishes that the pulse dynamics reduce to a closed system of ordinary differential equations for the activator pulse locations.
Moreover, we fully justify the reduction to the nonlocal eigenvalue problem (NLEP) showing the large difference between the
quasi-steady NLEP operator and the operator arising from linearization about the pulse is controlled by the resolvent.
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1. Introduction. Pulse solutions are the building blocks for the analysis of complex patterns in
reaction-diffusion equations. Within the proper scaling limit, the dynamics exhibited by reaction-diffusion
systems are governed by the interactions of localized solutions of pulse type. An example is given by the
spatio-temporal chaotic dynamics of the one-dimensional Gray-Scott system for which numerical simulations
indicate that the chaotic dynamics originate from the interactions and bifurcations of pulse solutions [11].

In the context of singularly perturbed equations in one spatial dimension, there is a well-developed theory
of the existence and stability of stationary pulse solutions based on the geometric singular perturbation theory
and the Evans function method (see [13, 4] and the references therein). There is no such general theory
for pulse interactions. In fact, strong pulse interactions, and especially the phenomena of pulse-replication
and annihilation, are extensively studied, but not yet understood mathematically. On the other hand, there
are methods to study the behavior of pulses in the weak interaction limit where the pulses are so greatly
separated that they can be considered at leading order as copies of a solitary pulse. In this regime the
exponentially weak interactions only affect the position of the pulses and has no leading order influence on
their shape or stability (see [7, 8, 12, 13] and the references therein).

Recently, an intermediate concept has been introduced in the context of singularly perturbed equations,
the semi-strong interaction case (see [5, 14] and the references therein). The semi-strong regime exists in
systems whose components decay at asymptotically distinct rates, so that some of the components of the
system approach the trivial background state between pulses, while others are not. Moreover the pulses alter
size and shape, see Figure 1.1, and may bifurcate due to the interactions [5, 14]. Up to now the semi-strong
pulse interaction has only been studied formally.

In this paper we show that the semi-strong interaction fits naturally into the framework of the renormal-
ization group (RG) methods developed to study the stability of slowly evolving patterns [12, 10]. For the
Gierer-Meinhardt equations, the geometric singular perturbation theory shows that the activator-inhibitor
interaction reduces the highly diffusive inhibitor to a local constant within each activator pulse. The value of
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2 KAPER, DOELMAN, AND PROMISLOW

this constant determines the activator pulse interactions. The RG analysis makes these statements rigorous,
in particular fully justifying the reductions made in the non-local eigenvalue problem (NLEP) analysis which
arises in the linear stability analysis of the pulses.

The singular perturbation theory typically constructs a family of pulse type patterns which are approx-
imate solutions of a given system of equations [1, 2, 5]. The solutions are characterized by parameters
~p ∈ Rk, which are often–but not exclusively–pulse locations. The linearizing about the global manifold of
slowly evolving pulse patterns for a particular choice of parameters ~p, allows one to decompose the phase
space into tangential (or active) and normal (or decaying) modes. In the RG approach, rather than using
the exact linearization, reduced linearized operators are identified at a discrete family of base points on the
manifold. These form a loose covering of approximate tangent planes, much like the scales of a fish form an
piece-wise linear envelope of the underlying body. In the current setting this gives two specific advantages:
first, in a neighborhood of each base point we identify a temporally constant linearized operator and asso-
ciated phase space decomposition, and second we are free to modify the governing linear operator in ways
that simplify the analysis. For the Gierer-Meinhardt equations, the singularly perturbed structure of the
linearized operators makes them strongly contractive on certain regions of the phase space, this permits a
nontrivial replacement of spatially varying potentials with delta functions, affording dramatic simplification
to the analysis of the principle linear operator. Indeed we replace the exact linearization with a putatively
O(ε−2) “perturbation” which is able to control the flow local to the manifold. These reduced linear oper-
ators give rise to exactly the NLEP operators introduced previously in the formal linear stability analysis,
[1, 5, 14].

The RG method shows that the NLEP operators control the flow in a neighborhood of the pulse config-
urations, generating a thin absorbing set in the phase space. Moreover we recover the leading order pulse
evolution by projecting the flow onto the tangent plane of the manifold of two-pulse solutions. In this paper
we only consider two-pulse solutions. Although there are no new conceptual features, the generalization to
N -pulses is technical. In particular determining the amplitudes of each pulse within an N -pulse configu-
ration requires a nontrivial nonlinear computation, and the stability of the underlying pattern will depend
sensitively upon the pulse shapes and separations. However, the nonlinear aspects of the stability approach
we developed here generalizes directly from the two-pulse to the N-pulse case. Our methods can also be
applied to semi-strong N -pulse interactions in classes of singularly perturbed reaction-diffusion equations
as considered in [5]. Nevertheless, interesting additional issues may emerge in specific settings, such as
the semi-strong evolution of pulses in the Gray-Scott equation, see [3], in which the essential spectrum is
asymtotically close to the origin.

The main result prescribes the semi-strong evolution for the localized two pulses at locations Γ = (Γ1,Γ2)
t,

capturing as well the impact of transient initial perturbations. After the decay of the transients, we recover
the formal pulse velocities at leading order. Fixing k0 > 0 sufficiently large, depending upon µ but inde-
pendent of ε, the semi-strong regime is comprised of those pulses whose separations ∆ = |Γ1 − Γ2| lie in
(∆Γ∗(µ), k0ε

−2). The lower bound is obtained from the quasi-steady NLEP analysis established in Propo-
sition 3.3, which shows that the two-pulse solution has quasi-stationary eigenvalues which are incompatible
with the two-pulse manifold for ∆Γ < ∆Γ∗(µ), this signals the transition to the strong interaction. For the
upper bound, the pulse amplitudes A(Γ), which depend upon the pulse positions Γ, evolve on an O( 1

ε4
) time

scale, increasing monotonically with growing pulse separation, ∆Γ, and approaching the limiting value 1
3

√
µ

for ∆Γ ≫ ε−2, see (1.5). We take k0 = k0(µ) so large that the pulse amplitudes and velocities no longer
depend upon separation distance, so that ∆Γ ≥ k0ε

−2 corresponds to the weak pulse interaction regime.
In the analysis the upper bound on pulse separation arises from a technical point, see (4.38). An approach
which works uniformly for the weak and semi-strong interactions can be obtained by replacing the weighted
norm ‖ <x>·‖L1 in Lemma 3.1 with a specialized Hölder seminorm on the Fourier transform. However the
weak interaction limit has already been studied, see [7, 8, 12, 13]), and we avoid this complication, tailoring
our analysis to the semi-strong case.
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We introduce the norm ‖ · ‖X on H1 ×H1 defined by

‖G‖X = ε‖G1‖L2 + ε−1‖∂ξG1‖L2 + ‖G2‖H1 , (1.1)

and remark that it controls the L∞ norm uniformly

‖G1‖L∞ ≤ (2‖G1‖L2‖∂ξG1‖L2)
1
2 ≤ ε‖G1‖L2 + ε−1‖∂ξG1‖L2 ≤ ‖G‖X . (1.2)

We state below our main theorem for the pulses in the semi-strong interaction regime.

Theorem 1.1. Let ε be sufficiently small, µ > µHopf , and the pulse separation ∆Γ ∈ (∆Γ∗(µ), k0ε
−2)

where ∆∗(µ) is as given in Proposition 3.3 and k0(µ) > 0 is independent of ε. The manifold of two-pulse
solutions (2.5), of the regularized Gierer-Meinhardt equation (2.3) is asymptotically exponentially stable up

to O(ε3). That is, given an initial value ~U0 sufficiently close to the manifold M of two-pulse solutions, (3.1),

then the corresponding solution ~U of the regularized Gierer-Meinhardt equations satisfies

~U(ξ, t) = ΦΓ +W (ξ, t), (1.3)

where Γ(t) evolves at leading order according to (4.17) and the remainder W satisfies

‖W‖X ≤M(e−νt‖W0‖X + ε3). (1.4)

In particular, after the perturbation W has decayed to O(ε3), the pulse evolution is given by the ordinary
differential equations (4.70) which are equivalent to

d

dt
∆Γ = ε2

√
µ

e−ε
2∆Γ

√
µ

1 + e−ε
2∆Γ

√
µ
, (1.5)

as obtained formally in [5].

Since the pulses are repelling (1.5), Theorem 1.1 governs the evolution of all asymptotically stable semi-
strong interacting pulses, i.e. any two-pulse solutions with ∆Γ(0) > ∆Γ∗(µ), will evolve according to (1.5)
until they enter the weak intraction regime.

2. The Two-Pulse Solutions of the Gierer-Meinhardt equations. As proposed the Gierer-
Meinhardt model, [9], has an artificial singularity in its nonlinear term, which suggests infinite production
of the activator, V , in the absence of the inhibitor, U . While the singular model can be studied by working
with exponentially weighted norms which preserve positivity of the inhibitor, the behavior of the model for
small concentrations bears little resemblance to chemical reality. Moreover the singularity has vanishingly
small impact on both the two-pulse construction and their evolution. To avoid needless clouding of the
analysis we regularize the Gierer-Meinhardt model by truncating the superfluous singularity. In the slow
spatial variable x, the regularized Gierer-Meinhardt equation is given by,

{
Ut = 1

ε2
Uxx − µU + 1

ε2
V 2

Vt = ε2Vxx − V + V 2

κ(U) ,
(2.1)

where U(x, t), V (x, t) : R×R+ → R, µ > 0 is the main (bifurcation) parameter, and ε > 0 is asymptotically
small, 0 < ε≪ 1. The regularizing function κ takes the form

κ(s) =

{
s if s > 2δ,
δ if 0 < s < δ,

(2.2)

and is smooth for s ∈ (δ, 2δ), with derivative less than two. In the absence of the inhibitor, U , the production
rate of the activator V reduces to V 2/δ, where δ is a small parameter. The regularization introduces an
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Fig. 1.1. The two-pulse solution of the Gierer-Meinhardt equation, shown at t = 500 and t = 5000, in the slow spatial
variable. The figures are obtained from numerical simulation (2.1) with ε2 = 0.01 and µ = 5.

O(e−ε
−2| ln δ|) perturbation to the pulse dynamics. The fast spatial scale is defined by ξ = x

ε
, so that (2.1)

transforms into
{
Ut = 1

ε4
Uξξ − µU + 1

ε2
V 2

Vt = Vξξ − V + V 2

κ(U) ,
(2.3)

We denote the right-hand side of (2.3) by F (U, V ). Since the regularizing term has only an exponentially
small impact on the pulse construction we carry over the asymptotic results for the singular Gierer-Meinhardt
equation without modification.

Proposition 2.1. The construction and spectral analysis of pulse solutions for the classical GM model
given in [4] and the construction and formal dynamics of semi-strong two-pulses given in [5] hold up to
exponentially small terms for the regularized models (2.1)/(2.3).

2.1. Notation. We write f = g + O(ε) in norm ‖ · ‖ if

‖f − g‖ ≤ cε, (2.4)

and assume the ‖ · ‖X norm if no norm is specified. The solution (U, V ) of the Gierer-Meinhardt equation

is denoted ~U . The two-pulse solutions are denoted by ΦΓ = (U0 + ε2U2 + . . . , V0 + ε2V2 + . . .)t, while the

initial data of the Gierer-Meinhardt equation is given by ~U0. We denote by ‖f‖bLp and ‖f‖ bH2 the Lp and
H2 norms of the Fourier transform of f . We remark that ‖f‖L∞ ≤ c‖f‖bL1 and conversely ‖f‖bL∞ ≤ c‖f‖L1,

and in particular that the delta function resides in L̂∞ but is not in L1. Also the norm ‖ <x>f‖L1 with
<x>≡ 1 + |x| controls the L∞ norm of the derivative of the fourier transform of f . We denote the mass of

a function f by f =
∞∫

−∞
f dξ.

2.2. Asymptotic Pulse Solutions. Within the semi-strong pulse regime the two pulses interact
strongly in the inhibitor component, U , and weakly through the activator, V . To work in this scaling
we fix k0 > 0 as large as desired, depending upon µ but independent of ε. The asymptotic family of semi-

strong two-pulse solutions is then parameterized by the pulse location Γ ∈ K = {(Γ1,Γ2)
∣∣∣Γ1 < Γ2, k0ε

−2 ≥
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|Γ1 − Γ2| ≫ 1/
√
ε}, where the 1/

√
ε bound determines the width of the pulse regions (see below) and the

upper bound determines the transition from the semi-strong to the weak pulse interaction. While the lower
bound on the pulse separation is large in the fast variables (ξ), it is small, O(

√
ε), in the slow (x) variables.

The weak pulse interaction, for which ∆Γ ≫ ε−2 in the fast variables, has been considered elsewhere. We
denote the two-pulse solution by ΦΓ(ξ) which we expand as

ΦΓ(ξ) =

(
ΦΓ,1

ΦΓ,2

)
=

(
U0(ξ;Γ) + ε2U2(ξ;Γ) + ε4U4(ξ;Γ)

V0(ξ;Γ) + ε2V2(ξ;Γ)

)
. (2.5)

We first describe the leading order terms (U0, V0)
t which were derived in [5]. To fully resolve the pulse

dynamics the renormalization procedure of section 4 requires a more accurate description of the two-pulse
solution which requires the construction of the higher order corrections, which we outline in Lemma 2.1

In the pulse construction the V -components of the two-pulse solutions are centered around the pulse-
positions ξ = Γk(t), where

Γ1(t) = Γ0 − ε2
∫ t

0

ĉ(s)ds, Γ2(t) = Γ0 + ε2
∫ t

0

ĉ(s)ds. (2.6)

In the two-pulse construction each pulse moves away from their mutual center Γ0 with equal and opposite
speed given by

ĉ =
1

2

√
µ

e−ε
2∆Γ

√
µ

1 + e−ε
2∆Γ

√
µ
, (2.7)

where ∆Γ = ∆Γ(t) = |Γ1 − Γ2|, see (1.5).

The leader order term, V0, of the V component of ΦΓ is given by the sum of two one-pulses

V0(ξ;Γ(t)) = φ1 + φ2, (2.8)

where for k = 1, 2 the one pulse solution is

φk(ξ) =
3

2
A(Γ) sech2 1

2
(ξ − Γk(t)). (2.9)

A key distinction between the semi-strong interaction depicted here and the weak pulse interaction is that
the pulse amplitude, A(Γ), depends nontrivially upon the pulse separation, ∆Γ = |Γ1 − Γ2|, via

A(Γ) =

√
µ

3

1

1 + e−2ε2∆Γ
√
µ
. (2.10)

The pulse regions Ik = Ik(t), k = 1, 2, are defined as regions outside which V0 is exponentially small, and
such that U0 remains constant at leading order over a pulse region. We set the width of the pulse regions to
be O(1/

√
ε), i.e. we define

Ik =

(
Γk(t) −

1√
ε
,Γk(t) +

1√
ε

)
, k = 1, 2. (2.11)

The choice of pulse region width is somewhat arbitrary but standard. Another distinguishing feature of the
semi-strong pulse interaction is that the slowly U -component of ΦΓ is not the sum of two one-pulses. To
the left of I1 and to the right of I2, U0(x, t) decays super-slowly, while in the region between I1 and I2 it is
cosh-like, but again on the slow spatial scale,

U0(ξ;Γ) =






Aeε
2√µ(ξ−Γ1) for ξ < Γ1 − ε−

1
2 .

A
cosh ε2

√
µ (ξ − (Γ1 + Γ2)/2)

cosh ε2
√
µ∆Γ/2

for Γ1 + ε−
1
2 < ξ < Γ2 − ε−

1
2 ,

Ae−ε
2√µ(ξ−Γ2) for Γ2 + ε−

1
2 < ξ

(2.12)
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As defined above, U0 would be non-smooth if extended into the pulse regions Ik. Rather we define the
U -component of the two-pulse solution inside Ik as U0 + ε2U2(ξ), where U0 ≡ A, and U2(ξ) is a solution of
Uξξ + φ2

k = 0 – see (2.3). Using (2.12) as boundary or matching conditions and the pulse amplitude (2.10),
we find

U0 + ε2U2(ξ;Γ) = A+ ε2






A[
√
µ− 3A](ξ − Γ1) −

∫ ξ
Γ1

∫ ξ1
Γ1
φ2

1(ξ2) dξ2 dξ1 for ξ ∈ I1,

A[
√
µ− 3A](ξ − Γ2) −

∫ ξ
Γ2

∫ ξ1
Γ2
φ2

2(ξ2) dξ2 dξ1 for ξ ∈ I2,
(2.13)

which gives that U0 +ε2U2(ξ) ∈ C1∩H2. The C1-smoothness of U0 +ε2U2(ξ) is equivalent to the amplitude-
pulse separation relation (2.10), i.e. U0 + ε2U2(ξ) can only be smooth for A(Γ) given by (2.10).

Relations (2.6), (2.7), (2.8), (2.9), (2.10), (2.12), (2.13) give a leading order description of the two-pulse
solution ΦΓ(ξ). The corrections U4(ξ) and V2(ξ) can be obtained by a straightforward regular asymptotic
expansion and are both only defined in the pulse regions I1,2 (see (2.22) in the proof of Lemma 2.1 below).
The residual of ΦΓ,

R = F(ΦΓ) =

(
F1(ΦΓ)
F2(ΦΓ)

)
, (2.14)

is determined by the right-hand side of (2.3), denoted by (F1, F2)
t, evaluated at ΦΓ. Obtaining L1- and

L2-estimates on the residual is a key step to controlling the remainder in the renormalization process,

Lemma 2.1. For the residual R = F(ΦΓ) defined in (2.14) we have,

sup
R

|F2(ΦΓ)| = O(ε2), sup
R\I1∪I2

|F1(ΦΓ)| = O(ε4), sup
I1∪I2

|F1(ΦΓ)| = O(ε
√
ε). (2.15)

More specifically

R2(Γ) = ε2ĉ (φ′1 − φ′2) + O(ε4) in L2(R), (2.16)

while,

‖R1(Γ)‖L1 = O(ε). (2.17)

The O(ε
√
ε) bound on F1 in (2.15) and the O(ε) bound on R1 in (2.17) deteriorate to O(ε−

1
2 ) bounds, if

we do not introduce the leading order corrections ε4U4 and ε2V2 in (2.5). Moreover, (2.16) no longer holds
in that case. On the other hand, the bounds on R2(Γ) given in the Lemma are sharp. The bounds on R1(Γ)
may be sharpened, but this does not lead to any improvements in the renormalization analysis of section 4.

Proof: In [5], ΦΓ is constructed as the solution of the classical Gierer-Meinhardt system
{ −ε6ĉkUξ = Uξξ − ε4µU + ε2V 2

−ε2ĉkVξ = Vξξ − V + V 2

U

(2.18)

with ĉ1 = −ĉ < 0 for ξ < Γ0 and ĉ2 = ĉ > 0 for ξ < Γ0, and ĉ = ĉ(t) as in (2.7). Note the factor ε4 difference
between the right hand sides of the U -equation here and in (2.3). We may employ a regular perturbation
expansion, writing

U(ξ, t) = U0(ξ;Γ) + ε2U2(ξ;Γ) + ε4U4(ξ;Γ) + ε6Ur(ξ, t; ε
2),

V (ξ, t) = V0(ξ;Γ) + ε2V2(ξ;Γ) + ε4Vr(ξ, t; ε
2),

(2.19)

where A, U2 and V0 are given in (2.8), (2.9), (2.10), (2.12), (2.13), and U4 and V2 have already been
introduced in (2.5). Likewise, we expand F1 and F2 (Proposition 2.1),

F1(ΦΓ) = 1
ε2

[
U2,ξξ + V 2

0

]
+ [U4,ξξ − µU0 + 2V0V2] + ε2

[
Ur,ξξ − ε4µUr − F inh

1,r (U2, V0,2,r; ε
2)

]
,

F2(ΦΓ) =
[
V0,ξξ − V0 +

V 2
0

U0

]
+ ε2

[
L22V2 − V 2

0 U2

U2
0

]
+ ε4

[
L22Vr − F inh

2,r (U0,2,4, ε
2Ur, V0,2, ε

2Vr; ε
2)

]
, (2.20)
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where

L22V = Vξξ − V +
V 2

0

U0
V, (2.21)

and the expressions for F inh
1,r (U2, V0,2,r; ε

2) and F inh
2,r (U0,2,4, ε

2Ur, V0,2, ε
2Vr; ε

2) follow directly by substitution
of (2.19) in (2.3). We obtain by (2.18) the following equations for U4 and V2,

U4,ξξ = µU0 − 2V0V2, L22V2 =
V 2

0 U2

U2
0

− ĉkV0,ξ, (2.22)

for ξ ∈ I1,2. These equations can be solved uniquely by application of the natural boundary/matching
conditions. Note that U4(ξ) grows as (ξ − Γ1,2)

2 for |ξ − Γ1,2| ≫ 1 and that V2 decays exponentially to 0 as
|ξ − Γ1,2| ≫ 1 (see (2.8)). The equations for the remainders Ur(ξ, t; ε

2) and Vr(ξ, t; ε
2) are given by,

Ur,ξξ − ε4µUr = F inh
1,r (U2, V0,2,r; ε

2) − ĉkU0,ξ − ε2ĉkU2,ξ − ε4ĉkU4,ξ − ε6ĉkUr,ξ,
L22Vr = F inh

2,r (U0,2,4, ε
2Ur, V0,2, ε

2Vr; ε
2) − ĉkV2,ξ − ε2ĉkVr,ξ,

(2.23)

for ξ ∈ R. It is a straightforward procedure to check that |Vr| and |F inh
2,r | are uniformly bounded for ξ ∈ R;

in fact, both Vr and F inh
2,r decay exponentially to 0 as |ξ − Γ1,2(t)| ≫ 1. Together with the definitions of V0

and V2 ((2.8) and (2.22)), substitution of this result in the second equation of (2.20) yields (2.16). This also
implies the results on F2(ΦΓ) in (2.15).

Outside the pulse regions Ik, all V0,2,r components are exponentially small, and U0 has been constructed
as solution of Uξξ−ε4µU = 0 (2.12). Therefore, the correction Ur to U0 in the U -component of the two-pulse
solution also varies as function of ε2ξ, and U2 and U4 have to be taken ≡ 0 outside Ik. This implies by
(2.20) and (2.23) that outside Ik

F1(ΦΓ) = −ε2ĉkU0,ξ = O(ε4)

(2.12). Since Ur decays for ξ → ±∞ with the same slow rate as U0, we find

∫

R\I1∪I2

|F1(ΦΓ)| dξ =
1

ε2
×O(ε4) = O(ε2).

Inside Ik, we conclude from (2.23) and the fact that U2 grows linearly with (ξ−Γi) (2.13), that Ur may grow
as (ξ − Γi)

3. Nevertheless, both Ur,ξξ and F inh
1,r (U2, V0,2,r; ε

2) only grow linearly in (ξ − Γi). Since the width
of the Ik intervals is O(1/

√
ε) (2.11), we deduce from (2.20) and (2.23) that supI1∪I2

|F1(ΦΓ)| = O(ε
√
ε)

(2.15). Hence, by (2.11),

∫

Ik

|F1(ΦΓ)| dξ =
1√
ε
×O(ε

√
ε) = O(ε),

which yields the L1-bound (2.17).

3. Linearization and the Reduced Operators. We define the manifold M ⊂ H1×H1 of two-pulse
solutions by

M = {ΦΓ

∣∣Γ ∈ K}. (3.1)

We decompose solutions in a neighborhood of the manifold as

(
U
V

)
= ΦΓ +W (ξ, t), (3.2)
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where the remainder W = (W1,W2)
t and Γ is taken as a function of time. In terms of the residual introduced

in (3.2) the GM equation (2.3) can then be written as

Wt +
∂Φ

∂Γ
Γ̇ = R + LΓW + N (W ), (3.3)

where R is the residual (3.34), LΓ is the linearization of F about ΦΓ, given by

LΓ =




ǫ−4∂2

ξ − µ 2ε−2ΦΓ,2

−Φ2
Γ,2κ

′(ΦΓ,1)

κ(ΦΓ,1)
2 ∂2

ξ − 1 + 2
ΦΓ,2

κ(ΦΓ,1)



 . (3.4)

In the linear operator above κ(ΦΓ,1) = ΦΓ,1 except for those ξ for which ΦΓ,2(ξ) = O(e−ε
−2| ln δ|), thus the

perturbation to the linearization introduced by the regularization is compact and exponentially small. The
final term, N (W ), representing the nonlinearity is given at leading order by

N (W ) =



 ǫ−2W 2
2

O(W 2
2 ) + O(V0W1W2) + O(V 2

0 W
2
1 )



 . (3.5)

From the asymptotic form of the pulse solution given in (2.8), (2.12), and (2.10), we calculate that

ε2
∥∥∥
∂U0

∂Γk

∥∥∥
L1

+ ε
∥∥∥
∂U0

∂Γk

∥∥∥
L2

+
∥∥∥
∂U0

∂Γk

∥∥∥
L∞

= O(ε2), (3.6)

while

∂V0

∂Γk
= −φ′k + O(ε2), (3.7)

in L2.

3.1. The Reduced Linearization. A key step in the renormalization group treatment is the replace-
ment of the exact linear operator with a reduced operator whose spectral and semi-group properties are
easier to analyze, yet such that the difference between the exact and the reduced operator, the secularity,
does not lead to growth of the remainder W . Due to the contractivity of the L11 component of LΓ, the
two-pulse potential which comprises the L12 component can be replaced with δ functions located at each
pulse position. The mass of the delta function is chosen to equal the mass of the product of the original
potential and the function it operates upon. We also replace the exact two-pulse solution ΦΓ with its leading
order approximation (U0, V0)

t. With the reductions the linearized operator is given by

L̃Γ =




ǫ−4∂2

ξ − µ 2ε−2
(
δΓ1

⊗ φ1 + δΓ2
⊗ φ2

)

−V
2
0

A2 ∂2
ξ − 1 + 2V0

A



 , (3.8)

where the tensor product of f1 and f2 is defined by

(f1 ⊗ f2)W = (f2,W )L2f1. (3.9)

In particular δΓk
⊗ φk represents the tensor product of the δ function centered at ξ = Γk with φk. In the

analysis below we use the notation

αk(W ) = (φk,W )L2 , (3.10)

for k = 1, 2. The scalar operators that appear in the upper left entry, respectively lower right, of the
matrix L̃ (3.8) will be denoted by L11, resp. L22, see (2.21). The reduced operator is ostensibly an O(ε−2)
perturbation of the original operator. However it is immediately clear that they share the same essential
spectrum

σess = {λ ∈ R : λ ≤ max (−1,−µ)} (3.11)
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3.2. The Point Spectrum. The two-pulse profiles which comprise the manifold M are not stationary
solutions, and as such it is not self-consistent to determine their linear stability in terms of the spectrum
of the associated linearized operator. We say that the two-pulse solution ΦΓ is spectrally compatible with
the manifold M if the spectrum of the associated linear operator can be decomposed into a part contained
within the left-half complex plane and a finite-dimensional part whose associated eigenspace approximates
the tangent plane of M at Γ.

To determine the point spectrum of L̃ we resolve the eigenvalue equation for the inhibitor, U , and reduce
the eigenvalue problem to a scalar equation for the activator component, V , of the eigenfunction. We call
this the NLEP equation, see (3.24), and denote the corresponding linear operator by L(λ,∆Γ). The NLEP
operator controls the point spectrum of L̃, to leading order.

Proposition 3.1. Up to multiplicity we have σp(L̃) = {λ
∣∣Ker(L(λ)) 6= 0}(1 +O(ε2)). That is, for each

eigenvalue, λ ∈ σp(L̃), with corresponding eigenvector Ψ = (Ψ1,Ψ2)
t, there is a λL and corresponding ψ

such that L(λL)ψ = λLψ, |λ − λL| = O(ε2) with Ψ2 = ψ(1 + O(ε2)) and Ψ1 given by (3.13) up to O(ε2).
Moreover the small eigenvalues of L̃ and L are both exponentially small.

Proof: The eigenvalue problem for the reduced operator is written as

L̃Ψ = λΨ, (3.12)

where Ψ = (Ψ1,Ψ2)
t is a possibly complex two-vector. Since L11 −λ is invertible for λ /∈ (−∞,−µ], we may

solve for Ψ1 as

Ψ1 = −2ε−2
(
α1(L11 − λ)−1δΓ1

+ α2(L11 − λ)−1δΓ2

)
, (3.13)

where the αk = (φk,Ψ2)L2 are as yet undetermined. From the Fourier transform we find

Ψ̂1(k) =
2√
2π

ε2
(
α1e

ikΓ1 + α2e
ikΓ2

)

k2 + ε4(µ+ λ)
. (3.14)

From the integral relation

1√
2π

∞∫

−∞

e−ikξ
ε2eikΓ

k2 + ε4(µ+ λ)
=

√
π

2(µ+ λ)
e−ε

2
√
µ+λ|ξ−Γ|, (3.15)

we may invert the Fourier transform of Ψ1 explicitly,

Ψ1(ξ, t) = α1H(λ, ξ − Γ1) + α2H(λ, ξ − Γ2), (3.16)

where

H(λ, x) =
1√
µ+ λ

e−ε
2|x|

√
µ+λ. (3.17)

Eliminating Ψ1, the equation for Ψ2 reduces to

(L22 − λ)Ψ2 =
V 2

0

A2 Ψ1, (3.18)

see also (2.21). Since Ψ1 is a slowly varying function of ξ, while each term in V0 decays exponentially to zero
at an O(1) rate in ξ, we may reduce the equation for Ψ2 to

(L22 − λ)Ψ2 =
V 2

0

A2 (α1H(λ, ξ − Γ1) + α2H(λ, ξ − Γ2)) , (3.19)

=
φ2

1 + φ2
2

A2 (α1H(λ, ξ − Γ1) + α2H(λ, ξ − Γ2)) + O(e−∆Γ), (3.20)

=
1

A2
√
µ+ λ

[
φ2

1 (α1 + α2E) + φ2
2 (α1E + α2)

]
+ O(ε2), (3.21)
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where

E = E(∆Γ;λ) = e−ε
2
√
µ+λ∆Γ. (3.22)

In the tensor product notation this is written as

(L22 − λ)Ψ2 =
1

A2
√
µ+ λ

[
φ2

1 ⊗ (φ1 + Eφ2) + φ2
2 ⊗ (Eφ1 + φ2)

]
Ψ2. (3.23)

We define the NLEP operator

L(λ,∆Γ) = L22 −
1

A2
√
µ+ λ

[
φ2

1 ⊗ (φ1 + Eφ2) + φ2
2 ⊗ (Eφ1 + φ2)

]
. (3.24)

This is a compact perturbation of L22 and thus is Fredholm, with the same essential spectrum, but is
no-longer self adjoint, indeed its adjoint exchanges the roles of the potentials in each tensor product.

Proposition 3.2. Except for the exponentially small eigenvalues, the point spectrum of the NLEP
operator L is given, up to multiplicity, by the zeros of the equation

R(λ) − 3

√
µ+ λ√
µ

1 + e−ε
2√µ∆Γ

1 ± e−ε
2
√
µ+λ∆Γ

= 0, (3.25)

where R is an explicitly known meromorphic function on C\(−∞,−1] given by (3.34).

Proof: The spectrum of the NLEP operator L can be determined explicitly as the zeros of an analytic
equation using the methods developed in [4], which we outline below. We introduce wh(ξ) ≥ 0 as the scaled
homoclinic solution of

wξξ − w + w2 = 0 (3.26)

with its maximum at ξ = 0. For k = 1, 2 we introduce the translates wh,k(ξ) = wh(ξ − Γk). Since
φk(ξ) = Awh,k(ξ) the equations (2.9) and (3.23) can be written as

d2Ψ2

dξ2
− [(1 + λ) − 2(wh,1 + wh,2)] Ψ2 =

1√
µ+ λ

[
w2
h,1 (α1 + α2E) + w2

h,2 (α1E + α2)
]
, (3.27)

where αk = αk(Ψ2) (3.10). Since both the potential of the Schrödinger operator on the left-hand side of the
equation, and the inhomogeneous term on the right-hand side consist of disjoint parts localized about Γ1

and Γ2, it is natural to decompose Ψ2 into

Ψ2 = ψ1(ξ) + ψ2(ξ), (3.28)

where ψk is localized about Γk and decays exponentially as ξ moves away from Γk. The equation (3.27) is
equivalent, up to exponentially small terms, to the coupled system,






d2ψ1

dξ2
− [(1 + λ) − 2wh,1]ψ1 =

w2
h,1√
µ+ λ

(α1 + α2E) ,

d2ψ2

dξ2
− [(1 + λ) − 2wh,2]ψ2 =

w2
h,2√
µ+ λ

(α1E + α2) .

(3.29)

We define ψ̄ = ψ̄(ξ;λ) as the uniquely determined bounded solution of

d2ψ

dξ2
− [(1 + λ) − 2wh]ψ = w2

h; (3.30)
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and its translates ψ̄k(ξ) are defined by ψ̄k(ξ) = ψ̄(ξ−Γk). The functions ψ̄ can be determined explicitly, see
[4].

We first consider the solution of (3.30) for λ /∈ σred = { 5
4 , 0,− 3

4}∪(−∞,−1], the spectrum of the operator

Lred =
d2

dξ2
− (1 − 2wh(ξ)). (3.31)

Clearly,

ψ1(ξ) = C1ψ̄1(ξ), ψ2(ξ) = C2ψ̄2(ξ) (3.32)

for some constants Ck that depend on λ and ∆Γ. Recalling that here αk = (φk,Ψ2)L2 and using (3.28), we
find

αk =

∫ ∞

−∞
φk(ψ1 + ψ2)dξ =

∫ ∞

−∞
Awh,k(C1ψ̄1 + C2ψ̄2)dξ = ACk

∫ ∞

−∞
wh,kψ̄kdξ = ACk

∫ ∞

−∞
whψ̄dξ (3.33)

up to asymptotically small corrections. The quantity

R(λ) ≡
∫ ∞

−∞
whψ̄dξ, (3.34)

is meromorphic for λ ∈ C\(−∞,−1], with poles at λ = 5
4 and λ = − 3

4 , see [4]. Note that in [4] a more
general function, R(λ;β1, β2), has been defined and studied; (3.34) is related to [4] by R(λ) = 216R(λ; 2, 2).
System (3.29) can be written as






d2ψ1

dξ2
− [(1 + λ) − 2wh,1]ψ1 =

Aw2
h,1R√
µ+ λ

(C1 + C2E) ,

d2ψ2

dξ2
− [(1 + λ) − 2wh,2]ψ2 =

Aw2
h,2R√
µ+ λ

(C1E + C2) .

(3.35)

Comparing the equations for ψ1,2(ξ) to (3.30), we obtain the following equations for C1 and C2,

C1 =
AR√
µ+ λ

(C1 + C2E) , C2 =
AR√
µ+ λ

(C1E + C2) , (3.36)

or, equivalently,




AR√
µ+ λ

− 1 AER√
µ+ λ

AER√
µ+ λ

AR√
µ+ λ

− 1




(
C1

C2

)
=

(
0
0

)
. (3.37)

For (3.27) to have non-trivial solutions the determinant of the matrix on the left-hand side of (3.37) must
be zero. Isolating R(λ) from the resulting expression and using (2.10) and (3.22), we obtain the equation
(3.25) whose zeros are the eigenvalues of the NLEP equation (3.23) up to multiplicity, outside of σred. These
eigenvalues lie on curves λ(∆Γ), parametrized by the pulse separation.

For λ ∈ σred we analyze the eigenvalue equation case by case. For λ = − 3
4 or 5

4 , equation (3.30) does not
have a bounded solution since the right-hand side is not orthogonal to the kernel of the Lred, and so these
values cannot be eigenvalues. However, the eigenfunction d

dξ
wh of Lred at λ = 0, is L2 orthogonal to wh.

The equation (3.33) implies that α1 = α2 = 0 and the system (3.29) has a double eigenvalue at λ = 0 with
a two-dimensional eigenspace spanned by { d

dξ
wh(ξ − Γ1),

d
dξ
wh(ξ − Γ2)}. These eigenvalues do not occur as

solutions of (3.25), rather they correspond to exponentially small eigenvalues of the original NLEP system
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Fig. 3.1. (a) The orbits of the zeroes λ(∆Γ) of (3.25) plotted parametrically in the complex plane as a function of ∆Γ

for µ = 1. The eigenvalues λ
1,2
+ (∆Γ) are closed loops attached to the homoclinic limit λ ≈ −0.48 + 1.20i; the curves λ

1,2
− (∆Γ)

approach the homoclinic point in the limit ∆Γ → ∞, but λ
1,2
− (∆Γ) collide on the real axis, becoming real as ∆Γ decreases

approaching the limits λ
1,2
− (∆Γ) → − 3

4
, 5
4

as ∆Γ → 0. The third pair of eigenvalues satisfies λ3
±(∆Γ) < − 3

4
with λ3

−(∆Γ)

disappearing into the essential spectrum of (3.23) as ∆Γ decreases through a critical value. All eigenvalues λ
1,2,j
± (∆Γ) have

negative real part for ∆Γ > ∆Γ∗(1) given by (3.38). (b) The closed λ1
+(∆Γ)-loops for five values of µ: µ = 0.7 > µTP,

µ = 0.6, 0.5, 0.4 ∈ (µHopf , µTP) and µ = 0.3 < µHopf . The ∆Γ-region (∆Γ1,∗
+ (µ), ∆Γ2,∗

+ (µ)) in which Re[λ1
+(∆Γ)] > 0 grows as

µ ∈ (µHopf , µTP) decreases, so that ∆Γ∗(µ) = ∆Γ2,∗
+ (µ) for µ < µ∗ ∈ (µHopf , µTP).

(3.23), whose corresponding eigenfunctions, derived in Lemma 3.7, form the key spectral projection onto the
active tangent plane.

We identify conditions on µ and Γ such that the reduced linearized operator, L̃Γ, is spectrally compatible
with the manfold M of two-pulse solutions.

Proposition 3.3. For each ∆Γ ∈ (0,∞), the NLEP eigenvalue problem (3.23) has two exponentially

small eigenvalues, denoted λ±, and 4 or 6 eigenvalues λ
j+
+ (∆Γ) and λ

j−
− (∆Γ), j± = 1, ..., J±, J± = J±(µ) =

2 or 3. For all µ > µHopf ≈ 0.36, there is a ∆Γ∗(µ) and a ν > 0 such that

Re[λ
j±
± (∆Γ)] < −ν < 0 for all ∆Γ ≥ ∆Γ∗(µ), j± = 1, ..., J±.

For µ > µTP ≈ 0.62 (the tangent point), ∆Γ∗ takes the exact form

∆Γ∗(µ) =
1

ε2
√
µ

log 3, (3.38)

while for µ ∈ (µHopf , µTP), ∆Γ∗(µ) increases with decreasing µ, with ∆Γ∗(µ) → ∞ as µ ↓ µHopf .

Since the two pulses of ΦΓ(ξ) move away from each other ((2.6), (2.7)), this result implies that the
spectrum of the NLEP operator L remains in the stable half-plane for all t ≥ 0 if ∆Γ(0) > ∆Γ∗.

Proof: We can distinguish two limits, ∆Γ → ∞ and ∆Γ ↓ 0. The first case represents the situation in
which the two pulses of ΦΓ(ξ) are so far apart that the two-pulse solution can be considered as two one pulse
solutions, i.e. the two-pulse solution is in the weak interaction limit. In this limit, (3.25) reduces to

R(λ) = 3

√
µ+ λ√
µ

, (3.39)

for both λ±(∆Γ). This is the relation that determines the point spectrum of the solitary one-pulse solution
of (2.1), independent of the regularization. We conclude by Theorem 5.11 in [4] that (3.39) only has solutions
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with Re(λ) < 0 for µ > µHopf and that (3.23) always has incompatible eigenvalues if µ < µHopf ≈ 0.36.
Moreover, (3.39) has 2 or 3 nontrivial eigenvalues, i.e. λ 6= 0, depending on µ – the third (compatible)
eigenvalue is created in an edge bifurcation as µ increases through µedge ≈ 0.77 [4]. There also are 2 or 3

curves λ
j+
+ (∆Γ) and λ

j−
− (∆Γ), i.e. j± = 1, ..., J±, J±(µ) = 2, respectively 3, for µ < µedge, resp. > µedge.

The eigenvalues λ3
±(∆Γ) are real and λ3

±(∆Γ) < − 3
4 .

For small values of ∆Γ there are two mechanisms to generate incompatible point spectrum, one which oc-
curs for µ > µTP and the other for µ ∈ (µHopf , µTP). The first occurs when the eigenvalues λ1

− and λ2
− collide

and become real. Indeed in the limit ∆Γ ↓ 0, it follows from Proposition 3.2 that λ1,2
+ (∆Γ) again approaches

a solution of (3.39), i.e. the λ1,2
+ (∆Γ)-branches are closed curves. On the other hand, |R(λ1,2

− (∆Γ))| becomes
unbounded in this limit. By evaluation of (3.25), we see that R(λ) becomes unbounded as λ1

−(∆Γ) → − 3
4 ,

the stable pole of R(λ), and as λ2
−(∆Γ) → + 5

4 , the other, unstable pole of R(λ). The passage of the real
eigenvalue λ2

−(∆Γ) through zero corresponds to ∆Γ given by (3.38) since R(0) = 6 [4]. In particular, the
eigenvalue problem (3.23) has incompatible eigenvalues for all ∆Γ < log 3/(ε2

√
µ), for µ > µTP.

In the second case, the λ1,2
+ (∆Γ)-branches may cross through the imaginary axis. For the tangent point

value, µ = µTP, the λ1,2
+ curves are tangent to the imaginary axis. For µ ∈ (µHopf , µTP), a part of the closed,

complex conjugate λ1,2
+ (∆Γ)-curves lies in the unstable half-plane, while the endpoints of the curve, i.e. the

eigenvalues associated to the stationary homoclinic one-pulse limit, lies in the stable half-plane, see Figure
3.1(b). More specifically, Re[λ1,2

+ (∆Γ)] > 0 for ∆Γ ∈ (∆Γ1,∗
+ (µ),∆Γ2,∗

+ (µ)), where

lim
µ→µHopf

∆Γ1,∗
+ (µ) = 0, lim

µ→µHopf

∆Γ2,∗
+ (µ) = ∞, lim

µ→µTP

∆Γ1,∗
+ (µ) = lim

µ→µTP

∆Γ2,∗
+ (µ) ≈ 1.32

ε2
,

so that ∆Γ∗(µ) = ∆Γ2,∗
+ (µ) > log 3/(ε2

√
µ) for µ ∈ (µHopf , µ

∗
+) for a certain µ∗

+ ∈ (µHopf , µTP).

The orbits of the eigenvalues λ of (3.23) as function of ∆Γ can be determined by a direct evaluation of R(λ)
[4], see Figure 3.1.

Remark 3.4. Proposition 3.3 implies that ΦΓ(ξ) is not spectrally compatible with the manifold M if
∆Γ(0) < ∆Γ∗(µ). However this lower bound on the admissible pulse separation distance does not limit
the semi-strong character of the pulse interaction in ΦΓ(ξ), since the U -component of ΦΓ(ξ) evolves on the
slow ε2ξ space scale. To quantify the lower bound on pulse separation we determine the corresponding
maximum value of the minimum Umin(t) of the inhibitor U between the two pulses Γ1,2 – see also Figure 1.1.
Since Umin(t;µ) decreases monotonically in time (by (2.10) and (2.12)), we find that a spectrally compatible
two-pulse solution must satisfy

Umin(0) < U∗
min(µ) =

A(∆Γ∗)

cosh ε2
√
µ∆Γ∗/2

=
3

16

√
3µ,

if µ > µTP (3.38). In the context of Figure 1.1, in which µ = 5, it follows that Umin(0) must be less than
0.72.... The evolution shown there is thus governed by Theorem 1.1.

Remark 3.5. The lower bound (3.38) on the pulse separation distance does not contradict the pulse-
splitting behavior observed in the Gierer-Meinhardt equation [6], in which a stable two-pulse solution is
observed with an O(1) pulse separation distance at the onset of splitting. It is shown in [6] that pulse
splitting only occurs for µ = O(1/ε4). For these values of µ, ∆Γ∗(µ) = O(1) (3.38), which implies that the
two V -pulses of ΦΓ(ξ) are no longer well-separated. Thus, the lower bound (3.38) agrees with the analysis of
[6], since it implies that µ must be O(1/ε4) in order to have two-pulse solutions that are not well-separated.

3.3. The Resolvent Estimates and the Semi-group. To establish estimates on the semigroup
generated by the reduced linearization L̃ we begin with preliminary bounds on the resolvents of L11 and
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L in the norms defined in Section 2.1. A key point is that the resolvent of L11 is strongly contractive on
zero-mass functions.

Lemma 3.1. Let λ ∈ C be an O(1) distance from σ(L11). Set g = (L11 − λ)−1f , then the following
estimates hold uniformly in λ,

ε‖g‖L2 + ε−1‖∂ξg‖L2 ≤ cε2 ‖f‖bL∞. (3.40)

Moreover for small total mass, f we have the improved estimate,

ε‖g‖L2 + ε−1‖∂ξg‖L2 ≤ c
(
ε2|f | + ε4

∥∥<x>f
∥∥
L1

)
. (3.41)

Proof: We take the Fourier transform of the equation (L11 − λ)g = f obtaining,

ĝ(k) =
1√
2π

ε4f̂(k)

k2 + ε4(λ+ µ)
. (3.42)

Assuming that f ∈ L̂∞, the bound




∞∫

−∞

∣∣∣∣
ε4

k2 + ε4(λ+ µ)

∣∣∣∣
2

dk





1
2

≤ cε, (3.43)

for some c > 0, shows that ‖g‖L2 ≤ cε‖f‖bL∞. Replacing f̂ with ikf̂ in (3.42) and calculating an integral
similar to (3.43) gives ‖∂ξg‖L2 ≤ cε3‖f‖bL∞. Together these results yield (3.40). In the case that f has small

mass, the identify f̂(0) = f and the fact that the norm ‖ <x>f‖L1 controls the L∞ norm of the k-derivative

of the Fourier transform of f , imply that f̂ is uniformly Lipschitz and small at zero, and so we have the
estimate

|f̂(k)| ≤ c
|f | + |k|
1 + |k| ‖ <x>f‖L1 . (3.44)

This inequality, used in (3.42) leads to the bound (3.41).

We define V to be the eigenspace associated to the two exponentially small eigenvalues λ∗± of L†, the
adjoint of L.

Lemma 3.2. Assume that λ ∈ C is an O(1) distance from σ(L)\{λ+, λ−}, then we have the following
estimate, uniformly in λ, and for Γ ∈ K.

‖(L − λ)−1f‖H1 ≤ c‖f‖L2, (3.45)

for all f ⊥ V .

Proof: The NLEP operator L is a finite rank perturbation of L22, a self-adjoint Schrödinger operator, and
hence is Fredholm. Moreover, away from its point spectrum, L−λ is boundedly invertible with O(1) inverse,
uniformly in ∆Γ for Γ ∈ K. If f ⊥ V then L − λ is uniformly invertible for λ in a neighborhood of λ±. To
obtain uniformity in λ for large |λ| we observe that the resolvent of L can be explicitly constructed in terms

of the resolvent of the self-adjoint operator L22 and that this later quantity decays like ( dist (λ, σ(L22))
−1 .

That the resolvent of L maps into H1 follows from a classic argument by contradiction.
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To study the resolvent of L̃ we project off the eigenspace {Ψ+,Ψ−} associated to its small eigenvalues,

λ±. We introduce the space XΓ =
{
~U

∣∣∣‖~U‖X <∞ and πΓ
~U = 0

}
, where the spectral projection is given in

terms of the adjoint eigenfuctions Ψ†
± by

πΓ
~U =

(~U,Ψ†
−)

(Ψ−,Ψ
†
−)

Ψ− +
(~U,Ψ†

+)

(Ψ+,Ψ
†
+)

Ψ+. (3.46)

The complimentary projection is π̃Γ = I − πΓ. Assuming the spectral compatibility of ΦΓ, the space XΓ

is associated to temporally decaying solutions of the semigroup generated by L̃Γ, while X̃Γ = RπΓ is the
eigenspace associated to the two exponentially small eigenvalues λ±. To characterize the projections we need
asymptotics for these eigenfunctions.

Lemma 3.3. The small eigenvalue eigenfunctions have the following asymptotic form

Ψ± =

(
0

φ′1 ± φ′2

)
+ exponentially small , (3.47)

Ψ†
± =

(
0

φ′1 ± φ′2

)
+ O

(
ε4

)
, (3.48)

in the X-norm.

Proof: The expansion for the eigenfunctions follows from classical results. For the adjoint eigenfunctions we
present the case for a single pulse, the generalization to two-pulses is straightforward. The adjoint operator
is given by

L̃†
Γ

=



 L11 − φ2
1

A2

2ε−2φ1 ⊗ δΓ1
L22



 , (3.49)

where L11 and L22 are given in (3.8). Writing Ψ† = (Ψ†
1,Ψ

†
2)
t, and taking λ∗+ exponentially small, we solve

for the second component of Ψ†, noting that φ1 is in the range of L22 since it is orthogonal to its kernel, φ′1,

Ψ†
2 = βφ′1 − 2ε−2Ψ†

1(Γ1)L
−1
22 φ1, (3.50)

where β is a free parameter. Solving for Ψ†
1 we have

Ψ†
1 =

β

A2L
−1
11 φ

2
1φ

′
1 −

2Ψ†
1(Γ1)

ε2A2 L−1
11

(
φ2

1L
−1
22 φ1

)
, (3.51)

The function φ2
1φ

′
1 has zero mass, so from (3.41) we have

‖L−1
11 φ

2
1φ

′
1‖L∞ ≤ cε4. (3.52)

It can be verified that φ2
1L

−1
22 φ1 is a positive O(1) function, thus we know L−1

11

(
φ2

1L
−1
22 φ1

) ∣∣∣
ξ=Γ1

is nonzero

and O(1). Evaluating (3.51) at ξ = Γ1 and solving for Ψ†
1(Γ1) shows that Ψ†

1(Γ1) = O(ε6). Substituting this
back into (3.51) and choosing β = 1 yields the equivalent of (3.48) in the one-pulse case.

With these results we may estimate the resolvent of L̃Γ restricted to XΓ.

Proposition 3.6. Let λ be an O(1) distance from σ(L̃)\{λ+, λ−} and denote G = (L̃ − λ)−1F . For
F ∈ XΓ, we have the following estimates on the resolvent of L̃, holding uniformly in λ, and in Γ ∈ K,

‖G‖X ≤ c
(
ε2‖F1‖L1 + ‖F2‖L2

)
. (3.53)
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If in addition the mass of F1 is small, then we have the improved estimate

‖G‖X ≤ c
(
ε2|F 1| + ε4‖ <x>F1‖L1 + ‖F2‖L2

)
. (3.54)

Proof: By analogy with the eigenvalue problem we solve for G1

G1 = (L11 − λ)−1F1 + α1H(λ, ξ − Γ1) + α2H(λ, ξ − Γ2), (3.55)

where H is given by (3.17), and αk = (G2, φk)L2 , for k = 1, 2. The second component of G satisfies

(L22 − λ)G2 = F2 +
V 2

0

A2

(
(L11 − λ)−1F1 + α1H(ξ − Γ1) + α2H(ξ − Γ2)

)
. (3.56)

Approximating the product V 2
0 H as in the eigenvalue problem, we find the equation

(L− λ)G2 = F2 +
V 2

0

A2 (L11 − λ)−1F1, (3.57)

where the NLEP operator L is defined in (3.24).

From the asymptotics on Ψ†
± the condition F ∈ XΓ is equivalent to the right-hand side of (3.57) being

orthogonal to V . From Proposition 3.1 the point spectrum of L̃, less its exponentially small eigenvalues,
agrees with the point spectrum of L, less its exponentially small eigenvalues, up to O(ε2). So λ is an O(1)
distance from σ(L)\{λ±} and the estimate (3.45) applied to (3.57) yields

‖G2‖H1 ≤ c
(
‖F2‖L2 + ‖V 2

0 (L11 − λ)−1F1‖L2

)
,

≤ c
(
‖F2‖L2 + ‖(L11 − λ)−1F1‖L∞

)
. (3.58)

From (3.40) and (1.2) we find that

‖G2‖H1 ≤ c
(
‖F2‖L2 + ε2‖F1‖L1

)
. (3.59)

If F1 has small mass, then applying (3.41) we have the improved estimates

‖G2‖H1 ≤ c
(
‖F2‖L2 + ε2|F 1| + ε4

∥∥<x>F1

∥∥
L1

)
. (3.60)

From (3.55) and (3.40) we find that

‖G1‖L2 ≤ c (ε‖F1‖L1 + ‖G2‖L2‖H(λ)‖L2) , (3.61)

but since

|Ĥ(k, λ)| ≤ c

∣∣∣∣
ε2

k2 + ε4(λ+ µ)

∣∣∣∣ , (3.62)

we have ‖H(λ)‖L2 ≤ cε−1 and we obtain

‖G1‖L2 ≤ c
(
ε‖F1‖L1 + ε−1‖F2‖L2

)
. (3.63)

A similar argument yields

‖∂ξG1‖L2 ≤ c
(
ε3‖F1‖L1 + ε‖F2‖L2

)
, (3.64)

which verifies (3.53)
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Fig. 3.2. The spectrum, σ(L̃), of the reduced operator as determined by Proposition 3.3, and the contour C used to

generate the semi-group S. Depiction is for the case µ > µHopf and ∆Γ > ∆Γ∗(µ) for which λ
1,2
± are within the left-half plane

and J± = 2, see Proposition 3.3. The eigenspace corresponding to the small point spectrum {λ±} is projected away and is not
contained within the contour.

If F1 has small mass, then applying (3.41) to (3.58) yields the improved estimates

‖G2‖H1 ≤ c
(
‖F2‖L2 + ε2|F 1| + ε4

∥∥<x>F1

∥∥
L1

)
. (3.65)

Following to arguements of (3.61-3.64) yields (3.54).

Since L̃ is an analytic operator we can generate its semigroup from the Laplace transform of the resolvent.
We fix the contour C in the complex plane as depicted in Figure 3.3 and

The semigroup S associated to L̃
∣∣∣
XΓ

is given by the contour integral

S(t)F =
1

2πi

∫

C

eλt(λ− L̃)−1F dλ, (3.66)

where we assume that F ∈ XΓ. The semi-group inherits the following properties from the resolvent.

Proposition 3.7. Let µ > µHopf and ∆Γ > ∆Γ∗(µ) be given and let ν > 0 be as given by Proposition

3.3. The solution ~U of ~U = S(t)F , where F ∈ XΓ, satisfies

‖~U‖X ≤Me−νt
(
ε2‖F1‖L1 + ‖F2‖L2

)
. (3.67)

for some M > 0 independent of ∆Γ > ∆Γ∗(µ). If in addition F1 has small mass, then we have the improved
estimate

‖~U‖X ≤Me−νt
(
ε2|F 1| + ε4‖ <x>F1‖L1 + ‖F2‖L2

)
. (3.68)

Proof: By Proposition 3.3, the conditions on µ and Γ imply that σ(L̃)\{λ+, λ−} is contained within the
interior of the contour C, and dist(σ(L̃), C) = O(1). The estimates on the semigroup follow directly from
the contour integral representation (3.66) of S(t), the resolvent estimates (3.53-3.54), and the uniformity of
these estimates over the contour C.
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4. Nonlinear Stability via the Renormalization Group method. We adapt the renormalization
group method developed in [12] to the singular perturbation setting of the Gierer-Meinhardt equations. We

assume at time t0 that our initial data ~U0 satisfies

‖ΦΓ∗
− ~U0‖ ≤ δ, (4.1)

for some Γ∗ ∈ K. The following Proposition, adapted from Proposition 2.2 of [12], permits us to choose our
base point Γ0 about which we develop our local coordinate system.

Proposition 4.1. Fix δ ≪ 1. Given ~U0 and Γ∗ ∈ K satisfying ‖W∗‖X ≤ δ, for W∗ ≡ ΦΓ∗
− ~U0, then

there exists M > 0, independent of ~U0 and Γ∗, and a smooth function H : X 7→ K such that Γ = Γ∗+H(W∗)
satisfies

W0 ≡ ~U0 − ΦΓ ∈ XΓ. (4.2)

Moreover, if W∗ ∈ X
Γ̃

for some Γ̃ ∈ K then

|Γ − Γ∗| ≤M0‖W∗‖X |Γ∗ − Γ̃|. (4.3)

Proof: Since

W0 = W∗ + ΦΓ − ΦΓ∗
, (4.4)

the condition (4.2) is equivalent to

0 = πΓW0 = πΓ (W∗ + ΦΓ − ΦΓ∗
) . (4.5)

Since Ψ†
±, are approximately spanned by (0, φ′1)

t and (0, φ′2)
t, and ΦΓ,2 = V0 + O(ε2), our equations Λ =

(Λ1,Λ2)
t, are equivalent, up to O(ε2), to

Λ1(Γ,W∗) ≡
(
W2,∗ + V0(Γ) − V0(Γ∗), φ

′
1(·,Γ1)

)

L2
= 0, (4.6)

Λ2(Γ,W∗) ≡
(
W2,∗ + V0(Γ) − V0(Γ∗), φ

′
2(·,Γ2)

)

L2
= 0. (4.7)

Since Λ(Γ∗, 0) = 0 and the Γ gradient of Λ given by

∇ΓΛ
∣∣∣
(Γ=Γ∗,W∗=0)

=

(
−‖φ′1‖L2 0

0 −‖φ′1‖L2

)
+ O(ε2), (4.8)

is uniformly invertible, the implicit function theorem guarantees the existence of a smooth function H which
provides the solution of (4.2) and in a neighborhood about the manifold M defined in (3.1). The interval of
existence of H may be chosen uniformly in Γ since the solution of (4.2) behaves smoothly as ∆Γ → ∞.

If in addition we have W∗ ∈ X
Γ̃
, then

(
W2,∗, φ′k(Γ̃k)

)

L2
= O(ε4) for k = 1, 2. We see that

∣∣∣
(
W2,∗, φ

′
k(Γk)

)

L2

∣∣∣ ≤
∣∣∣
(
W2,∗, φ

′
k(Γ̃k) − φ′k(Γk)

)

L2

∣∣∣ ≤M0‖W∗‖L2 |Γ̃ − Γ|. (4.9)
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4.1. The Projected Equations. To begin the RG procedure we freeze Γ = Γ0 in XΓ0
, where Γ0 is

the base point provided by the proposition above, and change variables as

~U(t) = ΦΓ +W, (4.10)

where W ∈ XΓ0
, and Γ = Γ(t). Comparing to (3.3), we write the evolution for the remainder W as

Wt +
∂Φ

∂Γ
Γ̇ = R + L̃Γ0

W +
(
LΓ − L̃Γ0

)
W + N (W ), (4.11)

W (ξ, 0) = W0, (4.12)

where W0 = W∗ + ΦΓ0
− ΦΓ∗

. The terms ∆L ≡ LΓ − L̃Γ0
include both the approximations made to the

linear operator and the secular growth implicit in the sliding of Γ away from Γ0.

To enforce W ∈ XΓ0
we impose the non-degeneracy condition ∂

∂t
π0W = 0, where π0 = πΓ0

is given
by (3.46). Since π0 is independent of time, the non-degeneracy condition is equivalent to π0Wt = 0, and
moreover as π0 commutes with L̃Γ0

it follows that π0L̃Γ0
W = L̃Γ0

π0W = 0. The non-degeneracy condition
is thus equivalent to the two equations

(
∂Φ

∂Γ
Γ̇,Ψ†

±

)

L2

=
(
R + ∆L W + N (W ),Ψ†

±

)

L2
. (4.13)

From the form of the semi-strong pulse solutions, and assuming momentarily that Γ̇ = O(ε2), we calculate

∂ΦΓ

∂Γ
Γ̇ =

(
0

φ′1Γ̇1 + φ′2Γ̇2

)
+

(
O(ε3)
O(ε4)

)
, (4.14)

component-wise in the L2 norm. Using the form of the adjoint eigenvector (3.48) and (3.7), the equations
(4.13) may be written

(
‖φ′1‖2

L2 + O(ε4) ‖φ′2‖2
L2 + O(ε4)

‖φ′1‖2
L2 + O(ε4) −‖φ′2‖2

L2 + O(ε4)

)
Γ̇ =





(
R + ∆L W + N (W ),Ψ†

+

)

L2(
R + ∆L W + N (W ),Ψ†

−

)

L2



 . (4.15)

Again using the asymptotic form of the adjoint eigenfunctions Ψ†
± we may neglect the contribution from

Ψ†
±,1 in the inner products on the right-hand side of (4.15). In particular, from the L1 bounds on R1 from

(2.17), we have

(R1,Ψ
†
±,1)L2 ≤ ‖R1‖L1‖Ψ†

±,1‖L∞ = O(ε5). (4.16)

Inverting the matrix on the left-hand side, and using the expansions for Ψ†
±,2 we arrive at the equations of

motion for Γ which show explicitly the coupling between the remainder W and the pulse evolution,

Γ̇k = −

(
R2 + [∆L W ]2 + N2, φ

′
k(·;Γ0)

)

L2

(φ′k, φ
′
k)L2

+ O(ε5, ε4‖W‖X). (4.17)

To simplify the equation for the evolution of the remainder, W , we introduce the reduced residual

R̃ = π̃Γ

(
R − ∂ΦΓ

∂Γ
Γ̇

)
, (4.18)

and observe from the asymptotic description (2.16) of R2, that the projection removes the leading order
term from the second component of the residual. By Lemma 2.1, the reduced residual enjoys the estimates

‖R̃1‖L1 ≤ O(ε), (4.19)

‖R̃2‖L2 ≤ O(ε4). (4.20)
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The evolution for the remainder W is now given by

Wt = R̃ + L̃0W + π̃0 (∆L W + N ) , (4.21)

W (ξ, t0) = W0, (4.22)

where L̃0 = L̃Γ0
and π̃0 = I−πΓ0

. The point of the reduction of the Gierer-Meinhardt (2.3) to the projected
residual equation (4.21), in the case of two-pulse dynamics, is that the asymptotically relevant and the
asymptotically negligible terms are now evident. The evolution for W is controlled by the first two terms on
the right-hand side of (4.21), we will show that the last two terms are asymptotically irrelevant, until Γ−Γ0

is so large that the secularity implicit in ∆L forces an update of Γ0.

4.2. Decay of the Remainder. We identify the duration of each renormalization interval, and quan-
tify the decay of the remainder W over this interval. To control the dynamics we introduce the quantities

T0(t) = sup
t0<s<t

eν(s−t0)‖W (s)‖X , (4.23)

T1(t) = sup
t0<s<t

|Γ(s) − Γ0|. (4.24)

The first enforces the decay of the remainder, W , the second measures the distance the pulse positions have
moved from its frozen base point. The variation of constants formula applied to (4.21) yields the solution

W (ξ, t) = S(∆t)W0 +

t∫

t0

S(t− s)
(
R̃+ π̃0 (∆L W + N )

)
ds, (4.25)

where we have introduced ∆t = t− t0.

To estimate the distance that the pulse locations, Γ, have moved from the base point, Γ0 we examine the
equations (4.17). We break ∆L in secular and reductive parts, ∆L = ∆Ls + ∆Lr where ∆Ls = LΓ − LΓ0

and ∆Lr = LΓ0
− L̃Γ0

, and remark that,

‖[∆L W ]2‖L2 ≤ ‖ [∆LsW ]2 ‖L2 + ‖ [∆LrW ]2 ‖L2, (4.26)

≤ c
(
|Γ − Γ0| + ε2

)
‖W‖L2, (4.27)

≤ c(T1(t) + ε2)e−ν(t−t0)T0(t), (4.28)

where the estimates on ∆Ls and ∆Lr are described in more detail below. From the form (3.5) of the
regularized nonlinearity it is straightforward to obtain the estimate

|(N2, φ
′
k)L2 | ≤ c‖W‖2

X . (4.29)

With these bounds in hand, the drift of the pulses is controlled by their speed,

T1(t) ≤
t0+∆t∫

t0

|Γ̇(s)|ds ≤
t0+∆t∫

t0

c
(
‖R2‖L2 + (ε2 + T1(t))e

−ν(s−t0)T0(t) + e−2ν(s−t0)T 2
0 (t)

)
ds, (4.30)

≤ c(ε2∆t+ (ε2 + T1)T0 + T 2
0 ). (4.31)

For T0 small enough we can eliminate T1 from the right-hand side, and neglecting T0 in the sum T0 + ∆t,
we obtain

T1 ≤ c(ε2∆t+ T 2
0 ). (4.32)
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Turning to bounds on the remainder, we estimate the irrelevant terms first. The secular term takes the
form

∆Ls =



 0 2ε−2
(
V0(·;Γ) − V0(·;Γ0)

)

V12(·;Γ) − V12(·,Γ0) V22(·;Γ) − V22(·;Γ0)



 , (4.33)

where V12 and V22 denote the potentials in the L̃12 and L̃22 components of L̃. In ∆Ls we expand the
potentials in Γ − Γ0,

V0(·;Γ) − V0(·;Γ0) = φ′1(·,Γ0)(Γ1 − Γ0,1) + φ′2(·,Γ0)(Γ2 − Γ0,2) + O
(
(T 2

1 + ε2T1)V0

)
, (4.34)

Vij(·;Γ) − Vij(·,Γ0) = O
(
T1V0

)
, (4.35)

where the O notation is in the sense of operators in the X norm. The ε2T1 term in (4.34) arises from the
amplitude variations of V0 with Γ. Using these expansions we see that

∆Ls W =




2ε−2

[
(Γ1 − Γ0,1)φ

′
1 + (Γ2 − Γ0,2)φ

′
2

]
W2 + O

(
(ε−2T 2

1 + T1)V0W2

)

O
(
T1V0(W1 +W2)

)



 . (4.36)

Moreover, the mass of φ′kW2 is O(ε4‖W‖X) since W ∈ XΓ0
and hence W ⊥ Ψ†

±. The mass of the first
component of ∆Ls W arises from the higher order terms, and satisfies

∣∣∣
[
∆Ls W

]
1

∣∣∣ ≤ c(ε−2T 2
1 + T1)‖W‖X . (4.37)

On the other hand the weighted norm of the first component satisfies
∥∥<x>

[
∆Ls W

]
1

∥∥
L1

≤ c
(
ε−2T1‖ <x>φ′jW2‖L1 + (ε−2T 2

1 + T1)‖ <x>V0W2‖L1

)
,

≤ c
(
ε−2T1‖ <x>φ′‖L1 + (ε−2T 2

1 + T1)‖ <x>V0‖L1

)
‖W‖X ,

≤ c
(
ε−2 + ∆Γ

)
T1‖W‖X , (4.38)

where ∆Γ = |Γ1 − Γ2| is the pulse separation. Combining the semi-group estimates (3.68) with (4.37-4.38)
we obtain

‖S(t− s)π̃0(∆Ls W (s))‖X ≤Me−ν(t−s)(1 + ε2∆Γ)T1(s)‖W‖X , (4.39)

where the T 2
1 ‖W‖X and ε2T1‖W‖X terms are dominated by T1‖W‖X from the second component. Thus

the dominant contribution from the secular terms comes from the second component of (4.36), the extra
powers of ε obtained by the approximate orthogonality of W2 and V ′

0 are superfluous. So long as the pulses
separation ∆Γ = O(ε−2), which is consistent with Γ ∈ K, we may absorb the second term in (4.39) into the
first.

While the small mass version of the semi-group estimates was not helpful for the secular term, it plays
a key role on the impact of the reductive term, ∆Lr W . Including the impact of the modification of the
leading order potential, and neglecting the higher order terms in the potential, the reductive term is given
by

∆Lr =



 0 2ε−2
(
V0 − δΓ1

⊗ φ1(Γ0) − δΓ2
⊗ φ2(Γ0)

)
+ O(V0)

O(ε2V 2
0 ) O(ε2V0)



 , (4.40)

where here the O indicates point-wise estimates. In fact the motivation behind the renormalization of the
operator LΓ0

to L̃Γ0
is the observation that

(
V0 − δΓ1

⊗ φ1 − δΓ2
⊗ φ2

)
W has zero total mass and a smooth
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Fourier transform for any W ∈ L2. Using this fact, the zero-mass version of the semi-group estimate (3.68),
and the semi-strong assumption, ∆Γ = O(ε−2), it is straightforward to obtain the estimate

‖S(t− s)π̃0(∆Lr W (s))‖X ≤Me−ν(t−s)(ε2 + ε4∆Γ)‖W‖X . (4.41)

Finally for the nonlinear term, given by (3.5), it is easy to verify,

‖S(t− s)π̃0N‖X ≤Me−ν(t−s)
(
‖W 2

2 ‖L1 + ‖W 2
2 ‖L2 + ‖W 2

1 ‖L2

)
, (4.42)

≤Me−ν(t−s)‖W‖2
X . (4.43)

From the bounds on the reduced residual (4.19-4.20) and the semi-group estimate we obtain

‖S(t− s)R̃‖X ≤Mε3e−ν(t−s). (4.44)

Taking the X-norm of variation of constants solution for W , (4.25), and using the estimates outlined above
we obtain

‖W (t)‖X ≤M



e−ν∆t‖W (t0)‖X +

t∫

t0

e−ν(t−s)
[
ε3 +

(
ε2 + T1(s)

)
‖W (s)‖X + ‖W (s)‖2

X

]
ds



 . (4.45)

To estimate the decay of ‖W (t′)‖X for t′ ∈ (t0, t) we evaluate (4.45) at t = t′, multiply by eν(t
′−t0), and

take the sup over t′ ∈ (t0, t) obtaining

T0(t) ≤M



T (t0) +

t∫

t0

[
ε3eν(s−t0) +

(
ε2 + T1(t)

)
T0(t) + e−νsT0(t)

2
]
ds



 , (4.46)

≤M
(
T0(t0) + ε3eν∆t +

(
ε2 + T1(t)

)
∆t T0(t) + T0(t)

2
)
. (4.47)

From (4.32) we may eliminate T1 from the T0 estimate,

T0(t) ≤M
(
T0(t0) + ε3eν∆t + ε2(∆t+ (∆t)2)T0(t) + T0(t)

2 + ∆t T 3
0

)
(4.48)

For ∆t≪ min
{
ε−1, T−1

0

}
the term Mε2((∆t)2 + ∆t) < 1

2 and we may eliminate the linear term in T0 from
the right-hand side, in addition we may absorb the cubic term in T0 into the quadratic one. With these
reductions (4.48) becomes

T0 ≤ 2M
(
T0(t0) + ε3eν∆t + T 2

0

)
. (4.49)

The quadratic equation in T0

0 = T0(t0) + ε3eν∆t − 1

2M
T0 + T 2

0 , (4.50)

has two positive real roots so long as T0(t0) + ε3eν∆t ≪ 1. The smaller of these roots, r0 takes the form

r0 = 2M(T0(t0) + ε3eν∆t) + O
(
T0(t0) + ε3eν∆t

)2

, (4.51)

while the larger is

r1 =
1

2M
+ O

(
T0(t0) + ε3eν∆t

)
. (4.52)
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Thus if T0(t0) ≪ 1 and ε3eν∆t ≪ 1 then there is an excluded region, either 0 < T0 < r0 or r1 < T0 < ∞.
Since T0(t0) < r0 and T0 is continuous in t, we see that

T0(t) ≤ r0 ≤M(T0(t0) + ε3eν∆t) (4.53)

so long as

∆t ≤ 3β| log ε|
ν

(4.54)

for any fixed β < 1. This condition on ∆t prevents the secularity from dominating the linear operator, in
particular it is a stronger condition on ∆t than that imposed after equation (4.48). This implies that

‖W (t)‖X ≤M
(
e−ν(t−t0)‖W (t0)‖X + ε3

)
, for t ∈

(
t0, t0 +

3β| log ε|
ν

)
(4.55)

and in particular for t1 = t0 + ∆t we have

‖W (t1)‖X ≤M
(
ε3β‖W (t0)‖X + ε3

)
. (4.56)

4.3. The RG Iteration. We break the time evolution into a series of inital value problems, tracking

the decay of the remainder over the long-time scale of many RG iterations. We fix β < 1 and ∆t =
3β| log ε|

ν .
The renormalization times are defined sequentially

tn = tn−1 + ∆t. (4.57)

We break the evolution of W into disjoint intervals In = [tn, tn+1). On each interval In we solve the initial
value problem (4.21) with initial data W (tn) ∈ XΓn

, with the quantities T0,n and T1,n corresponding to
(4.23-4.24) over In. The renormalization map takes the initial data, W(n − 1) = W (tn−1) for the initial
value problem on interval In−1 and returns the initial data Wn = W (tn) for the initial value problem on the
interval In,

GWn−1 = Wn. (4.58)

Arguing inductively, the initial data and the new base point Γn are obtained from W (t−n ), the end-value
of the evolution of W over In−1, by applying Proposition 4.1. Indeed we know that W (t−n ) ∈ XΓn−1

and so
from (4.3) we have

|Γn − Γ(t−n )| ≤M0‖W (t−n )‖X |Γ(t−n ) − Γ(tn−1)| ≤M0‖W (t−n )‖XT1,n−1(t). (4.59)

From the estimates on ∆t, and T1,n−1, we bound the jump in Γ at renormalization by

|Γn − Γ(t−n )| ≤M0

(
| log ε|ε2 + T 2

0,n−1

)
‖W (t−n )‖X . (4.60)

The solution at time t = tn is independent of the decomposition,

~U(tn) = Φ
Γ(t−n ) +W (t−n ) = ΦΓn

+Wn, (4.61)

and we may bound the jump in W at each renormalization

‖W (t−n ) −W (tn)‖X = ‖Φ
Γ(t−n ) − ΦΓn

‖X ≤ c|Γn − Γ(t−n )| ≤M0

(
| log ε|ε2 + T 2

0,n−1

)
‖W (t−n )‖X , (4.62)

where we used the fact that U0 is O(1) X-Lipschitz in Γ, as follows from (3.6) and (1.2). From (4.53), using
the equality T0,n−1(tn−1) = ‖Wn−1‖X , we have the estimate

T0,n−1 ≤M1

(
‖Wn−1‖X + ε3(1−β)

)
. (4.63)
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Combining the estimates (4.62) and (4.63) with (4.56), we obtain a bound on GWn−1 = Wn,

‖GWn−1‖X ≤
(

1 +M0

[
| log ε|ε2 +M2

1

(
‖W (tn−1)‖X + ε3(1−β)

)2
])

M
(
ε3β‖W (tn−1)‖X + ε3

)
(4.64)

Neglecting the terms involving positive powers of ε within the first parenthesis on the left-hand side, we may
bound ‖W (tn)‖X by ηn, solution of the map

ηn = M(1 +M2η
2)(ε3βηn−1 + ε3), (4.65)

with η0 = ‖W (·, t0)‖X , and M2 = M0M
2
1 . It is easy to see for η0 = O(1) and ε sufficiently small that

ηn → M

1 − ε3βM
ε3, (4.66)

as n→ ∞. Since ‖W (·, tn)‖X ≤ ηn, the estimate (4.56) yields the result (1.4) in Theorem 1.1.

4.4. Long-time Asymptotics. To recover the asymptotic pulse motion, we consider the situation
where t is sufficiently large that ‖W‖X ≤ Mε3. In this regime we see from (4.32) that T1 ≤ cε2| log ε|, and
hence from (4.27) that

‖∆L W‖L2 ≤ cε2| log ε|‖W‖L2 ≤ cε5| log ε|. (4.67)

Moreover from the form (3.5) of the nonlinearity we readily verify that

‖N2(W )‖ ≤ c‖W‖2
X = O(ε6). (4.68)

In this regime the estimates (4.67) and (4.68) on the secularity and the nonlinearity show that the remainder
W has an asymptotically small influence on the pulse evolution equations (4.17) which reduce to

Γ̇k(t) = −

(
R2, φ

′
k(·;Γ(t))

)

L2

‖φ′k‖2
L2

+ O(| log ε|ε5). (4.69)

Furthermore, the asymptotic form (2.16) for the second component of the remainder shows that

Γ̇k(t) = ε2ĉ(Γ)

(
φ′1 − φ′2, φ

′
k

)

L2

‖φ′k‖2
L2

+ O(ε4) = (−1)k+1ε2ĉ(Γ) + O(ε4), (4.70)

where ĉ(Γ) is – by construction – the position dependent formal pulse speed given by (2.7). In particular the
pulse separation ∆Γ = Γ1 − Γ2 grows as given by (1.5) while the amplitudes increases according to (2.10).
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