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Abstract. In this work, we analyse a pair of one-dimensional coupled reaction-diffusion
equations known as the Gray—Scott model, in which self-replicating patterns have been observed.
We focus on stationary and travelling patterns, and begin by deriving the asymptotic scaling of
the parameters and variables necessary for the analysis of these patterns. Single-pulse and multi-
pulse stationary waves are shown to exist in the appropriately scaled equations on the infinite
line. A (single) pulse is a narrow interval in which the concentratidrof one chemical is
small, while that of the second/, is large, and outside of which the concentratidntends
(slowly) to the homogeneous steady state= 1, while V is everywhere close t& = 0. In
addition, we establish the existence of a plethora of periodic steady states consisting of periodic
arrays of pulses interspersed by intervals in which the concentrétigsexponentially small
and U varies slowly. These periodic states are spatially inhomogeneous steady patterns whose
length scales are determined exclusively by the reactions of the chemicals and their diffusions,
and not by other mechanisms such as boundary conditions. A complete bifurcation study of
these solutions is presented. We also establish the non-existence of travelling solitary pulses in
this system. This non-existence result reflects the system’s degeneracy and indicates that some
event, for example pulse splitting, ‘must’ occur when two pulses move apart from each other
(as has been observed in simulations): these pulses evolve towards the non-existent travelling
solitary pulses. The main mathematical techniques employed in this analysis of the stationary
and travelling patterns are geometric singular perturbation theory and adiabatic Melnikov theory.
Finally, the theoretical results are compared to those obtained from direct numerical
simulation of the coupled partial differential equations on a ‘very large’ domain, using a moving
grid code. It has been checked that the boundaries do not influence the dynamics. A subset of
the family of stationary single pulses appears to be stable. This subset determines the boundary
of a region in parameter space in which the self-replicating process takes place. In that region,
we observe that the core of a time-dependent self-replicating pattern turns out to be precisely a
stationary periodic pulse pattern of the type that we construct. Moreover, the simulations reveal
some other essential components of the pulse-splitting process and provide an important guide
to further analysis.

AMS classification scheme numbers: 35K57, 34C37, 35B10, 35B32, 35Q80, 34E15, 65M06,
34C30

1. Introduction

Self-replicating patterns have recently been observed in a reaction-diffusion system
[21,17,22]. Numerical simulations show that the irreversible Gray—Scott model exhibits a
broad array of new patterns, including spots that self replicate in a self-sustaining fashion
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and develop into a variety of time-dependent and time-independent asymptotic states in
two dimensions [21], as well as pulses that self replicate in one dimension [22]. The two-
dimensional self-replicating spots have also been observed experimentally in a ferrocyanide—
iodate—sulfite reaction [17]. See [16] for more details of the set-up. Moreover, those same
experiments led to the discovery of other new patterns, such as annular patterns emerging
from circular spots [17].
The irreversible Gray—Scott model governs the chemical reactions?2) — 3V and
Y — P in a gel reactor, wher¥ catalyses its own reaction witlhhi andP is an inert product
(see [9-11]). The gel reactor is coupled to a reservoir in which the concentratidis of
andV are maintained constant. This coupling also results in both chemicals being removed
from the reactor in a concentration-dependent fashion. Furthermore, the diffusiviges,
and Dy, of the chemical$/ andV, respectively, can be any chemically relevant positive
numbers. For example, in the one-dimensional work [22], pulse splitting was observed when
Dy =1 andDy = §% = 0.01. By contrast, in the two-dimensional numerical simulations
[21], the spot replication was observed with; = 2Dy = 2 x 10-°, and other studies have
focused on the case of equal or nearly equal diffusivities, see for example [20, 25, 30].
Letting U = U(x,t) andV = V(x,t) denote the concentrations of the two chemical
specieg/ andV, the pair of coupled reaction-diffusion equations governing these reactions
is:

U
- = DyVU —UV?+ A1 —-U)
v 5 5

Here, A denotes the rate at whidl is fed from the reservoir into the reactor (and this
same feed process takk/sandV out in a concentration-dependent way), the concentration
of V in the reservoir is assumed to be zero, ads the sum ofA and the rate constant
ko, which equals the rate at whidh is converted to an inert product.

A pulse in one space dimension (and similarly a spot in two space dimensions) may
loosely be defined as an interval (region) of higrand lowU. Outside of such an interval
(region) U is near one and’ is near zero. A pulse widens (a spot grows) when the flux
of U into it is high enough to sustain the first reaction and replenish the amount of the
chemicalV that leaves the pulse (spot) through diffusion and the coupling to the reservoir.
Moreover, as a pulse widens (or a spot grows), the middle can quickly cave in (the spot
gets pinched into two) when insufficient amountgfeach the middle to sustain a high
Thus, a pulse (spot) can undergo a division process, and the two pulses (spots) can move
away from each other using up tbefrom adjacent intervals (regions). This initial splitting
is stationary in the sense that the centre of the pattern stays at the middle of the domain.
Further, dynamic pulse splitting occurs when there is endddyehind the moving pulse,
and a new pulse emerges on the trailing edge.

In order to study this rich pulse dynamics mathematically, we analyse the irreversible
Gray-Scott model in one space dimensisne(R and V2 = 32/3x?) on the infinite line:

U
—— =VU-UV?4+AQ-0)

a1 (1.2)
av 272 2

o =8 VEV HUVE-BY

where 0< 82 « 1. The choice ofDy = 1 and Dy = §2 « 1 here follows that of [22],
where it is explained that this singular limit ‘clarifies which physical processes are dominant
as the system evolves'.
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The numerical simulations of [22] and of this work (see section 6) suggest that neither
U nor V are O(1) throughout the whole pattern. For instance, during a peak,iit is
observed thatv is ‘large’ (> 1), while U becomes ‘small’ &« 1). Therefore, we first
perform a detailed scaling analysis that results in a scaled system in which the variables and
parameters aré(1). Based on geometrical arguments, these scalings enable us to deduce
that A must beO(6?) in (1.1) in order for the patterns we find to exist. They also lead us
to the correct asymptotic scalings for the variables and the other parafeter

Our main results are then the following. First, we prove the existence of single-pulse and
multi-pulse stationary states for (1.1) on the infinite line. The detailed asymptotic scalings
are derived specifically for this result, and are shown to be essential. As remarked above,
must scale with the small parame#érin order for these pulses to exist. Moreover, we show
that the relevant scalings for a pulse dfe= O(8%), V = O(*/3), and B = O(§%/3),
wherea € [0, g). In between the pulses of a multi-pulse solutidh,becomes« 1 but
not too small; whereas, in the semi-infinite intervals surrounding the pulsdsgcomes
exponentially small. Also, we are able to construct these solutions for each (resdaled)
and B anda € [0, 3).

Second, we establish the existence of a plethora of periodic stationary states for (1.1) on
the infinite line (equivalently for (1.1) on a finite interval with periodic boundary conditions).
These periodic states consist of a infinite array of narrow, equally spaced pulses. The same
scalings derived for the above stationary multi-pulse states are also central to the analysis
here. During a pulse event, the dependent variablesd V scale exactly as in the above
multi-pulse states. Here, howevéf,is exponentially small in the intervals between pulses.
Most importantly, these periodic states are observed to form the core regions of the time-
dependent self-replicating pulse patterns on finite domains, and it is found that their intrinsic
length scale is determined exclusively by the reaction and diffusion of the chemicals, and
not by boundary effects.

Third, the travelling pulses observed in the simulations of [22] and of this work are, for
large time intervals, more or less stationary in a co-moving frame. Hence, it is natural to try
to construct travelling pulses of the same type as the stationary pulses. However, we prove
that these travelling solutions cannot exist. Therefore, this non-existence result shows that,
while the numerically observed moving pulses begin to resemble the non-existing travelling
solitary pulses more and more, they must undergo some transformation, such as pulse
splitting. Moreover, we note that the analysis needed to obtain this result, while again
depending on the above scaling, is delicate, since the non-existence of travelling waves
violates simple generic counting arguments (see section 5).

Finally, we present the results of some numerical simulations of (1.1) on finite, but
sufficiently large, domains with various types of boundary conditions, using a moving
grid code. These simulation results corroborate our analytical results and confirm that the
patterns do not form in response to boundary conditions. In the (rescaled)-parameter
plane we determine a transition region which distinguishes two regions: a trivial one where
(U, V) tend to the asymptotically stable homogeneous ‘pattéfn= 1, V = 0, and the
so-called self-replicating pulse region. In this transition region we observe the stationary
single-pulse patterns described above. Above the transition region, namely in the self-
replicating pulse region, one does not expeacpriori, stationary behaviour. Nevertheless,
we observe that (after quite a long time) the self-replicating patterns on an unbounded
domain evolve towards a stationary periodic pulse pattern that grows at both sides by a
self-replication process which only involves the two travelling ‘boundary pulses’ and their
most recently created ‘images’. The periodic ‘core’ is once again of the type described
above. We have made a quantitative check between the observed patterns and those we
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constructed analytically and found a very good agreement. Note that the periodic core
itself turns out to be the asymptotically stable pattern if one considers a finite domain with
periodic boundary conditions (see figure 1 in [22]). Moreover, the simulations reveal some
other essential components of the pulse-splitting process and provide an important guide to
further analysis. In the discussion we suggest some ideas for future work.

Our analysis begins with the travelling wave ansdiz= u(x —ct) andV = v(x —ct),
wherec € R is the wave speed, and= 0 corresponds to stationary states. Plugging this
ansatz into (1.1) yields the following system of four ordinary differential equations:

u'=p

p=—cp+uv?— Al —u)

Sv' =g (1.2)
’ ¢ 2

8q =—§q—uv + Bv

where’ denotes the derivative with respect to the independent vafale —cz. Note that
the fourth component of the vector field (1.2)(’1&(%) if ¢ = O(1), therefore we introduce

y by

c=38y. 1.3)
Rescaling the independent varialfle= 7 yields:

u==4p

) = §[—8 Z_A1-

b [-8yp +uv (1—w)] (1.4)

V=¢q

g =—yq—uv’+ Bv
where’ denotes the derivative with respect to the new independent varable
Equation (1.4) possesses two time scalgesand p are slow variables, and and ¢
are fast variables. Hence, the system (1.4) splits into reduced slow and fast subsystems

in a natural fashion. The reduced slow subsystem is defined only on the invariant plane

{u,p,v = 0,qg = 0} ' M and is given byu” + Syu’ + A(1 — u) = 0, which has

an equilibrium at(u = 1,u’ = 0). The reduced fast subsystem is the nonlinear planar
oscillator i 4+ y v + uv?> — Bv = 0, where the variabley, is treated as a fixed parameter,
and where this oscillator possesses an orbit homocliniw te 0, v = ¢ = 0) wheny =0
(equivalentlyc = 0).

This analytical splitting has a natural geometric analogue that manifests itself in the
various types of observed pulse solutions and that will be exploited throughout this work.
Indeed, based on the structure of the pulse solutions observed in our numerical simulations
and those reported in figures 1 and 2 of [22, 3], respectively, we construct solutions which
consist of alternating distinguished slowt (O(8)) and fast £ O(1)) parts. The slow part
of the solution is guided by a particular slow trajectory on the invariant plane, or slow
manifold, M = {u, p, v = 0, g = 0}, while |v], |g|] < 1 in (1.4). By contrast, the fast part
of the solution is guided by a particular homoclinic orbit of the reduced fast system, since
u and p will change by anO(8§) amount during a fast excursion throu@h ¢) space.

More precisely, we employ adiabatic Melnikov theory [19, 24, 32] directly on the scaled
version of (1.4) to determine where the stable and unstable manifolds of the invariant slow
plane intersect. This theory is particularly simple whes 0, since (the scaled version of)
(1.4) has a nice symmetry then. The case 0 is much more involved, however, and it
is necessary to calculate the asymptotic expansions for the location of the intersection out
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to a fairly high order. Furthermore, for both cases 0 andc > 0, it is also necessary to
calculate the asymptotic expansions for the base points of the fast stable and unstable fibres
lying in the transverse intersection of the slow plane’s stable and unstable manifolds; again
to sufficiently high order wher > 0. In this respect, we make use of the fundamental
work [7] in geometric singular perturbation theory to study how the fast and slow dynamics
‘hook up’ to each other.

By constructing fast—slow periodic and homoclinic solutions of the type just described
to a version of (1.4) in which the variables and parameters are properly scaled, we obtain
our first and second main results. In particular, the locally unigue homoclinic orbits of
(1.4) that we find—which are biasymptotic to the equilibrium pdint= 1, »’ = 0) of the
slow subsystem and which are comprised of one or more fast excursions intoun-the
space—immediately imply the existence of single-pulse and multi-pulse stationary states of
(1.1) on the infinite line. In addition, each of the periodic orbits of (1.4)—consisting of
slow segments neakt and fast excursions away froo into the v — ¢ space—whose
existence we prove is precisely a periodic stationary state of (1.1). Thes@ periodic
orbits are locally unique and lie exponentially close to the transverse intersections found
above using adiabatic Melnikov theory, by a modified version [27] of the exchange lemma
with exponentially small error [13]. Finally, the dynamics of (1.4) also holds the key to our
proof of the non-existence of travelling waves.

The periodic patterns we observe are Turing patterns because they are found to have
an intrinsic chemical wavelength as described above. However, they are not formed by the
bifurcation mechanism Turing proposed [29], because they do not appear to emerge from
small inhomogeneities in linearly unstable homogeneous steady states. Rather, the initial
data taken for most of our simulations are localized, large-amplitude perturbations from the
homogeneous steady staté = 1, V = 0), which is linearly stable for all positive values
of the parameterd and B. See [14] for a recent review of Turing patterns and spiral waves
in reaction-diffusion systems, and note that [31] show thgt Dy must exceed a critical
ratio for supercritical bifurcations to occur.

The work here on the irreversible Gray—Scott model involving equations (1.1) fits
into the larger problem area of the reversible Gray—Scott model, see for instance [11],
equation (5) in [30], or equation (1) of [25]. The work reported in [30] shows that
steady spatial patterns may form, for example, from finite-amplitude perturbations of a
stable homogeneous steady state, when the diffusion coefficients of all three species are
equal. Also, in [25], it is shown, under the same assumption of equal diffusivities, that the
presence of external gradients leads to Hopf bifurcations from spatially homogeneous states
to periodic states as well as transitions to other patterns, including multi-hump branches and
fronts. In [6] and [8] patterns that develop from finite-amplitude perturbations to linearly
stable homogeneous states are studied in one- and two-dimensional FitzHugh—Nagumo
models. In one dimension, the existence of large-amplitude multi-pulse and periodic
stationary waves is shown when the diffusivity of the inhibitor is large, see [6]. Note that one
of the major differences between the FitzHugh—Nagumo and the Gray—Scott models is the
existence of an excitation threshold in the former. Finally, we remark that multi-peak and
periodic patterns have also recently been observed in models of the Belousov—Zhabotinsky
reaction, see [1, 26], respectively.

Equations of the form (1.1) witid, B = 0 are also of interest. The recent work [18]
investigates the dynamics of propagating fronts in this autocatalytic reaction. There, a new
phenomenon, dubbed biscale chaos, that occurs under the same condition imposed here
is reported and analysed, namely that the diffusivity of the ‘féelis sufficiently larger
than the diffusivity of the ‘autocatalys¥’, although with qualitatively different initial data.
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Finally, we remark that other localized phenomena are reported in [4] for a system of
reaction-diffusion equations related to (1.1) but with a small parameter in front of the term
AV /ot.

The paper is organized as follows. In section 2, we perform the scaling analysis that
puts (1.4) into the form suitable for the analysis presented in the remainder of the paper.
The global geometry of the rescaled system is studied in section 3, where we explicitly
identify distinguished fast and slow orbit segments. In section 4, we use the results from
section 3 to construct stationary single-pulse and multi-pulse homoclinic solutions as well
as a plethora of periodic steady-state solutions. The non-existence of travelling waves is
shown in section 5. The theoretical results of sections 4 and 5 are compared to those of
numerical simulations in section 6. Finally, we discuss a variety of issues related to our
results and suggest further work in section 7.

T T T (b

N -
o8 S L 1 o8r Sl P

o6} \ ; 4 06}

02f 1 02} Nl

Figure 1. Stationary one-pulse homoclinic orbits observed in numerical simulations of (1.1) at
time + = 1000: @) A = 0.01, B ~ 0.13, 52 = 0.01; (b) A = 0.003, B ~ 0.086, 52 = 0.003.

Note that by equation (2.4) and remark 22= 1 andb = 0.6 in both @) and ). The
concentratior/ is given by a broken curve, and the concentrafibis denoted by a full curve.

2. Scaling

A priori, it is not clear that it is necessary to introduce new scales in (1.4). However, we
shall show in this section that the patterns observed in the numerical simulations correspond
to solutions of (1.4) in which most quantities are not®f1), at least not for allp. In
figure 1, we present plots of two stable, stationary singular patterns which were obtained
by numerical simulation of (1.1) for different choices of the parameigrd, B); we refer
to section 6 for a detailed description of the numerical analysis. In these simulations, the
concentrations/ and U are plotted as full and broken curves, respectively.is almost
everywhere small, except for one high ‘peak,” whileis everywhereD(1), except in the
peak region. To be more precise, in the peak region, the maximumsokles as a negative
power of§ and O< U « 1, and outside of the peak regions,is exponentially small ir.
Finally, the values ofA and B are also not?(1): A = 0.01 = 62, B ~ 0.13 in figure 14),
A = 0.003= 62, B~ 0.086 in figure 16). Therefore, in this section we shall present the
relevant scalings of all quantities; their derivation is given in the appendix.

In the derivation of the appropriate scalings, we focus on the construction of solutions
homoclinic to the saddle poirt = (1, 0, 0, 0) of (1.4). See figure &) for a diagram of a
one-pulse homaoclinic orbit in phase space wires 0. Note that these homoclinic solutions
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/ @ / (b)

M

Figure 2. Schematic illustrations ofy) the one-pulse homoclinic orbiit, (1) ¢ WS(S)NWY (S)
and ) a periodic orbitl p (¢) in the four-dimensional phase space of (2.9) with, for simplicity,
y = 0. Note that these schematic illustrations show the slow segmerijs, in coordinates
and the fast segments {@, —¢) coordinates.

correspond exactly to the stationary patterns shown in figure 1jlimu(x,t) = 1,
limy e v(x, ) =0, V &~ 0 except for a ‘fast’ jump through the phase space. However,
while the patterns shown in figure 1 are stationary, we perform the scaling analysis for the
more general case of travelling waves in this section. Also, we remark that the restriction to
homoclinic solutions is not essential in the derivation of the new scalings: the same scalings
will be used in section 4.2 where we study periodic solutions, see figbje 2(

First, we introduce: by

A = 8. (2.2)

This scaling ofA agrees completely with the numerical values chosen for the simulations
presented in figures 4f and @): A = §2 in both cases. Moreoverd = 0.02 while

82 = 0.01 in the simulations in [22]. Analytically, the rationale for scalidgin this
manner may be seen as follows. The saddle paingf (1.4) has two-dimensional stable
and unstable manifoldgy5(S) and WY (S). The flow induced by (1.4) restricted 191 is
linear, therefore the intersectiofg’ (S) N M and WY (S) N M are straight lines inM (see

also figure 3 in which the diagram is for = 0, and see section 3.1):

eUS = {p =1 (j: 4A + 522 — 8)/) = 1)} 2.2)

wheretV ¢ WY (S) corresponds with the- sign and¢S ¢ W5(S) with the — sign. The
desired homoclinic solutioli;, (n) € W5(S) N WY (S) consists of three parts: first a slow
part close taeY, then there is a fast excursion followed by the third part closé’ tavhich

is again slow, see figure & The fast excursion ‘jumps’ frongV to ¢5; and hencegV
and ¢5 need to beO(s) close to each other at the ‘take-off and ‘touch-down’ points of
the fast excursion. It follows from (2.2) that the jump must oc€us) near S (and thus
1—u = O(5)). However, the numerically observed patterns show #hest not close to 1
during the excursion. By (2.2), we observe that@¢) jump from ¢Y to ¢35 through the
fast field for 1— u # O(8) is only possible ifA = 0(6?): thentV and ¢S are O(8) close
for all u of O(1). Hence, we arrive at (2.1).
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Next, figures 14) and ) indicate that: # O(1) during the excursion through the fast
field (see also section 6). Also, it is clear from the fast subsystem of (1.4)thahnot be
O(1): a solution which leaves the slow manifafef will follow the unstable manifold of
the point(0, 0) of this subsysten®(§) close. This orbit cannot retur®(s) close toM,
due to the strong ‘friction’ term-y¢. Thus, we scale:

u =25 and y =689 (2.3)
wherea > 0 andB > 0 are, so far, free parameters. This scaling assumeg tb@bnot be
smaller than® (1) during the excursion through the fast fieléts is the leading order part
of u during a ‘jump’. Similarly, eithery = 0, which corresponds to stationary wavesyor
is O(1), and not smaller. These propertiesioindy will be essential in the proof of the
non-existence result of section 5.

Based on the above ‘ansatz’ (2.3), one has to resgale, v, ¢ and B in order to
obtain a system which might govern solutions of the singular type sketched in figure 2
(and numerically found in figure 1). The main idea behind the derivation of the significant
scaling is (again) the application of a ‘jump’ condition: a solution that leaves the slow
manifold M in the neighbourhood ofV must return close t@%. This approach yields:

‘C)

an

r]=8_%°‘ﬁ u=138%u p:S%“ﬁ v =

(=%}

3@ (2.4)
g=4d A=58% B =33 c =8
We present the detailed derivation of this scaling analysis in the appendix.
Introducing these scalings into (1.4), and dropping hats, we arrive at:

0= 8(17501)17

b= 5(17%1)[1/“)2 _ 5(1+ﬁ+§a)yp _ 5(27%01)“ + 5(2+§a)au]

. (2.5)
V=¢q
g = —uv’+bv — S(ﬂ_%“)yq

with two additional conditions for the free parameterand 8 (see the appendix):
1—%oe>0 or 0<ot<i;’ (2.6)
B—3a>2(1-35e) oo B=2-a>3. (2.7)

In the next sections, we will expand the solutions of (2.5) with respect to the leading-
order perturbation term@-3 and we will study the relative magnitudes of the ‘friction’
term in the fast field and the amplitude of the slow components of the vector field. Therefore,
we introduce for simplicity of notation; ando by

e = §l3e and 20 =sfm, (2.8)
Furthermore, we defing = 1% so thats = ¢”. Plugging in this final notation, the main
3(1
equations to be analysed in this paper are:

u=ep

p = eluv? — 2% 0a — g0y p 4 o0 Dy

b=gq (2.9)
g = —uv?+bv—e?yq,

Here, 0< ¢ <« 1,0 > 0 andp > 1. Note that the critical poin§ = (1,0, 0, 0) of (1.4)
has been rescaled intd/s%, 0,0,0) in (2.5) and(1/¢:*~2,0,0,0) in (2.9), where we
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remark that:;’(,o — 1) = ap. Also, for completeness, we note thatis given explicitly by
o=B+a-2/1-3a).

Remark 2.1. Based on the numerical simulations shown in figure 1, those in section 6,
and those of [22], one would say thatis approximately 1 in (2.5). In the simulations
shown in figure 1, we tookk = 1 andb = 0.6; henceB ~ 0.13 in figure 1&) and

B ~ 0.086 in figure 16). Also, the choiceB = 0.079 with 2 = 0.01 in the numerical
simulations of [22] is related to the realistic value lofof approximately B7, since, by
(2.4), B = 0.079 = b8%° ~ 0.366(0.01)1/3. However, in section 4 we shall see that there
exist stationary pulses (thus= y = 0) for any« € [0, 3). Nevertheless, the numerical
simulations suggest that only those withr~ 1 can be stable (for certain valuesofinds,

see section 6). If we look for non-stationary (travelling) pulses, then the valadoetomes
important, as we shall see in section 5. In the simulations illustrated in figures 7-9, we show
numerically that the splitting pulses travel with speeg: O(§?), thus, by (2.4)8 =1 in
(2.5).

Remark 2.2. There are three free parameters in the original, unscaled system41.8):y.

As a consequence of the scalings, there are fiweb; y, o, p - in (2.9) (or equivalently,
a,b,y,a, B in (2.5)). The main difference is that we introduced, by the scalings in this
section, explicit new parameters that fixed the magnitudes of the parameters in (1.4) as
order functions in§ by the scalings. All five parameters in (2.5) and (2.9) @@), which

is clearly not the case in (1.4).

Remark 2.3. The above scaling respects the fundamental chemistry of the Gray—Scott
model. Recall thatB = A + k,, wherek, > 0. By our scaling, we see thdt is always
greater tham, since, by (2.4)B = §%/3b > A = §%a with « € [0, 3) (see equation (2.9),

for all @« andb of O(1) and 0< § <« 1).

Remark 2.4. In this section, the parameter e [O, g) has been introduced by the
observation that the solutioti of (1.1) is notO(1) during a pulse excursion of, but
O(8%). On the other hand, one could also introduces the parameter that measures the
magnitude ofB with respect tos: B = §2*/3b. From this point of view one can say that
the magnitude oB determines the magnitude 6f (and V') during a pulse-excursion (see
also sections 6 and 7).

3. Global geometry fore =0 andfor0<e « 1

The fast subsystem of (2.9) is given by
V=g

3.1
G = —uv’+bv— (31)

8(2+0)Vq

in which u is constant. Wherr = 0, (3.1) is a one-parameter)( family of planar
Hamiltonian systems, with Hamiltonian
2 b 1

KW, q;u) = % — Evz + éuv?’
Moreover, where = 0, the equation (3.1) possesses a centre equilibriufa at% qg=0

and a saddle equilibrium & = 0, ¢ = 0) connected to itself by a homoclinic orbit (see

figure 3@))

(3.2)

vo(t; ug) = 3b/(2ug) sechl[(vb/2)t] and qo(t; ug) = vo.  (3.3)
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/4 "N W

Figure 3. Schematic illustrations whep = 0 of (a) the (v, ¢) phase space of the fast subsystem,
and p) the slow vector field onM for y = 0 showing the location of the curve, Ty, £V,

¢S5, and a hyperbolic orbit segmeic. Note that thex coordinates of the saddls, and the
upper two intersectiong, N ¢V and Ty N ¢, are onlyO(1) if « = 0.

The homoclinic orbit, which may be thought of as a right-swimming fish, surrounds
the centre equilibrium and is symmetric about theaxis, with a maximum point at
(Vmax = %,q = 0). We shall frequently use the fact thay is an even function of

t.

The complete phase portrait of (2.9) when= 0 follows immediately by putting
together the above geometrical information from the fast subsystem together with the simple
observation that both variablesand p are constant in time whean = 0 in (2.9). First,
the planeM = {(u, p, v = 0, ¢ = 0)} is a normally hyperbolic manifold, trivially invariant
since it is a plane of equilibria. Second, if we Btdenote a large open set owl that
contains the saddle equilibriu$i but not points from the sefu = 0}, then the manifold
M|y has three-dimensional local stable and unstable manifolds. These three-dimensional
manifolds are the unions of the one-dimensional local stable and unstable manifolds of the
saddle equilibria of (3.1), and they at& smooth for every- > 0. Finally, each point
(u, p,v = 0,9 = 0) on M is connected to itself by a homoclinic orbit. Therefore, the
manifold M|y is connected to itself by a three-dimensional homoclinic manifglg\1).

3.1. Dynamics on\

The detailed geometric information about the- 0 limit of (2.9) discussed above helps to
determine the geometry of the full system (2.9). When 0, the planeM is still invariant
under the flow of the full system (2.9). The flow owl is slow, and most orbits ot
leak out of U on the boundary in both forward and backward time.

Whene > 0, the slow subsystem

u =p
1
r— _8§(3p+1)a _ 8(2p+1+(r)

(3.4)

p yp+e® Vau

is linear and has precisely one saddle equilibrium at the restristionr= 1/53("‘1), p=0)
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of S to M. The linearization of (3.4) has eigenvalues given by

b = 3ot [ /g 4 eriSi2my2 — chvisiny ], (3.5)

Therefore, the stable and unstable manifoldss akstricted toM are known explicitly as
graphs:

U,s def ,u.s . _ _ 1
W2 (S)|pm = £7° P = At <u Sg(p—l)> (3.6)

where¢V and ¢S are rescaled versions of (2.2) (see figurk)B(Asymptotically, we have:
ovs p = FeJa+hot (3.7)

for « > 0 (equivalentlyp > 1), u = O(1), independent o/ by (3.5). By contrast, when
a =0 (i.e. p = 1), £Y-S cannot be approximated by a vertical line h.o.t.’, and one must
use (3.6).

3.2. Persistent fast connections

When 0< ¢ « 1, the stable and unstable manifoldsef|; in the e = 0 system persist

as three-dimensional;” smooth stable and unstable manifold&Y (M) and WS (M).

This persistence result for the local manifolds follows from a straightforward application
of the Fenichel theory of [7] to (2.9) (see also theorem 3 of [12]). The branches of these
manifolds that coincided when = 0 no longer do so, and in general will intersect each
other in two-dimensional surfaces, and in these intersections lie the only orbits biasymptotic
to M.

We will employ a Melnikov method to detect these intersections. In particular, system
(2.9) is of the type to which Robinson’s extension of the Melnikov method applies, see
[19,24,32]. Letr = 5, so that the independent variable of (2.9) is now denoted by
t. Let (u(@®), p(t),v(t), q(t)) represent a solution of (2.9) that passes through the point
(uo, po, v(0),0) at timer = 0. Note that we have suppressed thelependence in this
notation.

The splitting distance between the manifold$’ (M) and W5 (M) can be measured in
the hyperplandg = 0}, which is the hyperplane transverse Wo(M) and is spanned by
the three vector¢l, 0, 0, 0), (0, 1, 0, 0), and the unit normal
(0,0, 2X3b/2u, 0; u), %(319/2% 0; u))

> v

no= , , =(0,0,1,0). 3.8

"= 110,0, 2K (3b/2u, 0; ), Gy (3b/2u, 0 uw))| ( ) 59
The distance measurement is given by

AK (uo, po; a, b, y) = f K (u(t), q(2); u(t), p(t)) dt (3.9)
ase — 0", where a straightforward computation yields

K =—e®yq% + Lepv®. (3.10)

Since we look for solutions on these perturbed stable and unstable mariifdlds?)
and WY (M), we need to expand the solutioas(), p(z), v(z), g(¢)) of (2.9) in powers of
the small parametet. The structure of this expansion will depend on the values ahd
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p. However, we note that the expansion remains standard at least up to terms smaller than
O(?):

u(t) = ug + eur(t) + €%us(t) + h.o.t.

p(1) = po+ep1(t) + €2 po(r) + h.o.t.

v(1) = vo(t; uo) + v1(r) + €%v2(7) + h.o.t.

q(t) = qo(t; uo) + £q1(1) + £%¢2(1) + h.o.t.
ase — 0, wherewvg(t; ug) and go(t; ug) are the unperturbed homoclinic solutions given
in (3.3). Note that it depends am whether the next term in the expansionwaf) is of
0?9y or O(¢%). This distinction will become important in section 5. Solutions on
the local unstable manifold of1 are represented by expansions valid on the semi-infinite
time interval (—oo, 0], and solutions on the local stable manifold.bf are represented by
expansions valid on the semi-infinite time interval {&0). The higher-order terms will
be determined perturbatively.

We choose the initial conditions on the curée’ (M) N WY (M) N {¢g = 0}, whose
existence we establish below. We assume th@ = uo andu;(0) = 0 for j > 1: the
initial conditions po, p;(0) andv;(0) (j > 1) are then determined as a functionuef by
the condition thatl"(r) = (u(z), p(t), v(t), q(t)) € WS(M) N WY (M).

Remark 3.1. In this type of Melnikov calculation, it is usually sufficient to use only the
unperturbed solution(ug, po, vo(t; uo), qo(t; ug)). However, here we need higher-order
corrections since the magnitude of the perturbation in the fast fi@d®+*), is smaller
than the evolution of the slow field?(¢).

(3.11)

By substituting (3.11) into (2.9), we find for the first-order corrections @nd p:
ui(t) = 0

C (3.12)
pat) = /0 uov2() dr + p1(0).

Note that the integral term ip1(¢z) is an odd function of the time variable Determining
v1(¢) and all other higher-order terms depends on the type of solutions one is looking for
and requires further analysis. Plugging these expansions into (3.10) and (3.9) yields:

AK =¢ / [3pov3 (1) + e(3p1(H)V3(t) + povi(t)va(t) — ey qd(t)) + h.o.t]ds (3.13)

where AK is a function ofug, po; and the parametets b, andy.

We consider solutions that are biasymptoticXé; thus, AK must have zeroes, and
there must be a balance between some of the terms in the integrand. Moreover, these
solutions must be homoclinic t8; and, hence, they take off (respectively, touch down)
from (on) M near¢Y (¢5). Thus, by (3.7) and the fact that the perturbations can at most
have anO(¢) influence onp(¢) during half a circuit through the fast field, we have to set
po = 0 and p1(0) = po; i.e. po determines the initial condition gb(z) at the O(e) level.
Moreover, we observe that K = O(g2), and hencgv(0) — vp(0)| = O(e?). Thus, the
first-order correctiorv; of v is a solution of a homogeneous second-order linear equation
with initial conditionsv;(0) = 01(0)(= ¢1(0)) = 0, namely: v1(#) = 0. Now, we recall
from (3.12) that the integral term ipsi(¢) is odd and also thaty(z) is even, so that all
parts of the second term in the integrand of (3.13), except the funpgi(ﬂ)ug(t), are odd.
Hence, (3.13) reduces to:

o0
AK (o, po; a,b,y) = 82/ (%ﬁovg(t) - eang(t)) dr + h.o.t.
—oQ
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Using (3.3), a straightforward integration yields:

6b°\/b \ (2p
AK (uo, po; a, b, y) = &° ( {) <po - s”y) + h.o.t. (3.14)
Sug ug
Therefore, to leading ordeA K has simple zeroes along the line
p =1y, (3.15)

This result should be interpreted as follows: the orHit&; xg) through the points
xo = (u, p, vo(0; u), 0) are biasymptotic toM if u and p are related to leading order
as in (3.15). Note that it has now become clear thatannot become negative, or, in the
terminology of (2.5), thap — %(x cannot be smaller than(2— %a) (the scalings in (2.3)
imply that bothu (= &) andy (= ) are exactlyO(1) with respect toe, while p cannot
be larger tharO(e) by (3.7)).

In order to quantify the influence of the fast field on theand p-coordinates of a
solution in WY (M) N WS (M) during its excursion through the fast field, we define

Ap(uo, po;a,b,y) E/ pdt (3.16)
Au(ug, po;a,b,y) = / udr. (3.17)

Straightforward computations give (by (2.9) where> 1):

Ap =¢ foo uOV2(@1) + O(e?)) dr

o0

=¢ f [uov(t) + £ ui(t)v2(t) + 2uovo(t)va (1)) + O] dr

6bv/b + O(e%) (3.18)
0

=¢&

where we have again used(r) = 0 andv,(¢) = 0. Finally, we use the fact that we will
only study Au(ug, pg) for values of (ug, pg) in the neighbourhood of tha K = 0 line
(3.15). Thus,pg = O(e) which yields by (2.9) that the change inis of higher order:

Au = O(s?). (3.19)

There are two other curves o that play a crucial role in the analysis of the next
sections and that are obtained as follows. The first intersectidigfAM) and WY (M)
in the hyperplandg = 0} is given by (3.15) to leading order. This intersection is a one-
dimensional curve in the two-dimensional manifékf (M) N WY (M). Through any point
xo on this curveWsS (M) N WY (M) N {g = 0} there is an orbil"(¢; xg) which approaches
M for ‘large’ r. More precisely, the Fenichel theory [7] already cited above implies that for
anyT (z; xo) there are two orbit§'[, = '}, (; x5 ) C M andl'y,(r; x5) C M, respectively
(whereI'™(0, xg) = xg € M), such that|I"(¢; xo) — I'},(t; xg)|l is exponentially small for
t > 0 wherer > O(%) and || (z; xo) — I, (¢; xy )|l is exponentially small for < O with
—t > O(%). As a consequence,

d(T(t; xo), M) = O(e’f) for |t] > O <1> or larger
&

for somek > 0, andI‘fVl(z; xoi) determine the behaviour df(¢; xg) near M. Therefore,
we define the curve%, c M (take off) and7y ¢ M (touch down) as

To = Uy {xg =T (0; x5)} and Ta = Uyofxg = T30, x3)} (3.20)
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where the unions are over aly in W5 (M) N WY (M) N {g = 0}. T, (respectivelyTy), is
the collection of base points of all of the fibres Wi’ (M) (respectivelyWs(M)) that lie
in the transverse intersection BfY (M) and W5(M). See figure 3) for a diagram when
y =0.

The locations of7, and Ty can be obtained explicitly by determining the relations
betweenxo = (uo, po, vo, 0) andx;” = (uz, p3,0,0). The accumulated change jn of
I'(¢) during the (half-circuit) excursion through the fast field is measured by

0 00
/ p dt and / p dt
00 0

whenr < 0 andr > 0, respectively. The changes jnof I'*(¢) during the same period of
time can be neglected, in highest orders, sipce: O(e%) on M by (2.9). By (2.9) and
(3.19), we also conclude thap = uoi to leading order. Sincey is given by (3.15), we
find (by a calculation similar to (3.18)) to leading order:

1 (G 6b«/5>
T : p==cleyu—

2 u
(3.21)
_ 1 (., 6b/b
Ty : p= és e’yu+ i .

Having identified in this section the geometric features of (2.9) both in the invariant
plane M and in the directions transverse to it, we are now ready to construct the stationary
waves of (1.1). However, we will see in section 5 that a more subtle analysis is necessary
in order to study the (non-)existence of travelling waves.

4. Stationary solutions

In this section, we focus on the stationary=£ 0) solutions of (1.1). These are given by
solutions of (2.9) withy = 0. In particular, fora € (0, g), we construct single-pulse and
multi-pulse orbits homoclinic t@ in section 4.1, as well as a variety of multi-pulse periodic
solutions, including the steady states reported in the simulations of [22], in section 4.2. The
special case oft = O is treated in section 4.3. Finally, we refer the reader to section 6
for the results of numerical simulations in which many of these homoclinic and periodic
stationary waves are observed as stable patterns.

4.1. Single-pulse and multi-pulse homoclinic orbits

Wheny = 0, the equations (2.9) possess the symmetry:

r— —t p— —p and q— —q. (4.2)
One-pulse homoclinic orbits of the type described in section 2 are constructed as follows
(see figure A)). LetI'" () = (w (t), p~(),v (¢),q (t)) denote an orbit of (2.9) on
WU (S) with v=(¢) > 0. Its existence guarantees the existence of a symmetric solution on
W3(S) which we denote:

L) = @ @), p™ (1), v (1), g7 (1) = ™ (=1), =p~ (=), v (=1), —=q~ (=1)).

For large negative, I'~ lies close toM and moves alongV ast increases.I'” leaves
the neighbourhood of\ in an O(e) ball about a take-off pointug, py) on ¢V N T,
whereug is O(1) and will be determined below. TheR,” makes an excursion through the
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fast vector field and transversely intersects the= 0} hyperplane for the first time in a
point which we shall denotéu1, p1, v1). By the symmetry (4.1)['t executes a symmetric
trajectory in backward time: it depar® in an O(e) ball about the touch down point
(ug, pg) = (ug, —pg) € M and transversely intersects the= 0} hyperplane for the first
time in the point(u;, —p1, v1). One-pulse solutions therefore exist when= 0, so that
the two intersection points coincide. In that caBe(t) = ' (1) € WY (S) N W5(S) is the
one-pulse homoclinic orbit.

We proceed to computpi. From section 3, we know that; = p, + %Ap where
Ap is the increment irp during half an excursion in the fast field and is given by (3.18):
Ap = 86’;—{5 + h.o.t.. Note thatAp has been computed in section 3 for ordite) with
ro e {q0= 0,v > 0} and that we replacedy, the u-coordinate ofl"(0) in (3.18), by
uy . However, we observe by (3.19) thg] = ul = uo + O(¢?). We infer from (3.7) that
po = —e/a+hot for (ug, py) € €Y. Hence,p; is a function ofuy; and, settingp; = 0
to leading order yields:

uy = 3b\/§ . (4.2)

Thus, we have proved the following theorem for the caise- 1.

Theorem 4.1. There exists amg(«) > 0 such that for every) < ¢ < go(), for @ € (0, g),

for everya and b > 0, and for every positive integeV, the system (2.9) with = 0
possesses a unigué-pulse orbit homoclinic taS. Moreover, for eachV, the homoclinic
orbit consists of two slow segments interspersed witsuccessive excursions in the fast
field during whichu is near3Nb./b/a. Finally, for eachN, the homoclinic orbit lies in the
transverse intersection a¥? (S) and W5(S).

Remark 4.1. Note that the above calculation with (3.7) is only possible dor- 0 or,
equivalentlyp > 1. In fact,eg(@) — 0 ase — 0. The casex = 0 is special. In this case,
(2.9) reduces to the unscaled (1.4) with= §%a (use (2.4)). Moreover, one has to use (3.6)
instead of (3.7). In section 4.3, we will establish (theorem 4.3) that when0 there can

be either two or zero homoclinic orbits (with a saddle node bifurcation of homoclinic orbits
in between), depending on the valuesuohndb. See also the discussion after theorem 4.3
as well as that in remark 2.2.

Proof of theorem 4.1. Note that the last statement of the theorem follows directly from
the dependence afp onu,. SinceAp depends inversely om;, (4.2) is a simple zero of
p1. Hence, the symmetry (4.1) implies tha’ (S) and W5 (S) intersect transversely in this
homoclinic orbit. We remark that these same resultsyfet 0 can be obtained (section 5)
by considering the general cage> 0, and examining the intersection @§ and ¢V as
given by (3.21) and (3.7), respectively.

We proceed to prove the theorem fr > 2, again relying heavily on the symmetry
(4.1). See figure 4 for an illustration of a-pulse orbit withN = 2. First, we construct the
two-pulse orbit. Consider a solutidir (1) on WY (S) that intersects the hyperplafig = 0}

a second time at the poirit,, p,, v2). Such a solution exists as long ass sufficiently
small and the take-off pointu,, py) can be chosen such thatk < 0, so thatl'™(z) is
neither in the local stable manifold g¢1 nor winds up on the other side &F5(M) (that
is: v~ (¢r) does not become negative immediately after the (first) retuii-ofo anO(,/¢)
neighbourhood of\1). We show at the end of this construction that this choice is possible.

Due to the symmetry (4.1)["(¢) also has a second transverse intersection with the
hyperplang{g = 0} at the point(uo, — p», v2). The semi-orbitd"~(z) andI"*"(¢) hook up if
p2 = 0. Hence, it remains to calculaje = p, + Ap, whereAp is a change irp during
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Figure 4. Schematic illustration of thev = 2 pulse homoclinic orbit of
(2.9).

one complete circuit in the fast field (3.18). Recalling (2.9) and the factthatO(¢) over

the time interval of interest, or equivalently, by using (3.19), we seeithamains constant

to sufficiently high order during both of the near-separatrix excursions that this two-pulse
orbit makes. Hence, this two-pulse orbit departs frarhin an O(e) ball centred at the
point (uq , pg) with

uy = eb\/f (4.3)

exactly as stated in the theorem. The fact that this two-pulse homoclinic orbit lies in the
transverse intersection &FY (S) and W(S) follows directly from the symmetry (4.1) and

the fact thatp, has a simple zero at; = 6b./b/a. For the sake of completion, we observe
thatv, = O(/¢) since AK = O(e).

Inductively, one uses the same procedure to consiuptilse homoclinic orbits for any
finite N > 2. Of course, one must ascertain, as we do below, Atfat< 0 afterI"(¢) has
made its(N — 1)th near-separatrix excursion, so that this orbit always stays on the correct
side of WS(M). We find that these&v —pulse orbits leave\t near(ug , py ), Where:

B b
uy = 3Nb\/; (4.4)

and thatpy has a simple zero afj .

Finally, we establish that the orbifs~ which return to the hyperplang = 0} finitely
many times, whose existence we assumed in the above constructiaisfd, do indeed
exist. Recalling (3.14), we see thAtk < 0 for orbits with pp < 0 andy = 0, wherepg
is the p-coordinate of the intersection &f(z) with the hyperplandq = 0, v > 0}. Hence,
each timel’ (¢) departs from a neighbourhood #ft to the left of the take-off curvel,,
it always intersects the hyperplafg = 0} another time withw = O(1) (see figure 3)).

For values ofu, greater tharuy = 3by/b/a € ¢V N T, corresponding to the one-pulse
homoclinic, we know that? is to the left of T, thusT'~(¢) will at least intersec{g = 0}

three times: twice fon = (O(1), once in between for < v « 1. A straightforward
calculation shows that a second intersection"ofz) with {g = 0} O(/¢) nearM is only
possible foru, > 9b/b/a + O(e). Thus, the three-pulse homoclinic orbit constructed
above plays the role of separatrix solution. Inductively, one can show along the same lines
that each of theVv = (2n — 1)-pulse solutions is a separatrix solution and that it is only
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possible forl'~ () to have amth intersection with the hyperplarig = 0} O(/¢) nearM
if uy > 3@2n —1b/b/a + O(e). This completes the proof of theorem 4.1. O

Remark 4.2. The result of theorem 4.1 can be generalized to obtain homoclinic orbits with
N pulses whereV = o(1/¢). To show this, we consider aN of O(¢7*), for a certain

s > 0. Errors inAu and Ap have become)(¢?~*) after O(¢~*) circuits through the fast
field. This expression has to remain smaller than the leading order te¢m<pf However,
during each excursion in the fast field, the incremenpiis O(g), so we conclude that the
above analysis is valid foN = O(¢™*) with s < 1.

4.2. Periodic steady states

In this section, we construct a variety of periodic steady states (), including those
observed in the numerical simulations, see figure 1 of [22], and section 6 of this work. The
simulations of [22] were performed on an interval with periodic boundary conditions. An
initially solitary pulse replicated until it filled the interval with eight identical, stationary,
pulses. In section 6, we will show that such a periodic pattern also occurs on unbounded
domains, at the core of the self-replicating pulse pattern. Mhepulse periodic orbits
observed in the simulations consist Mf copies of the same fundamental periodic orbit in
the (u, p, v, g) phase space. This fundamental orbit consists of one fast excursion from the
slow manifold M and one (long) segment during which the orbit is nédr Thus,v andg
are exponentially small during the largest part of the period, which yields that the solution
V of the PDE (1.1) must have the same behaviour (see section 6). We prove the existence
of various families of such fundamental periodic orbits. Moreover, we are able to calculate
the period and other key features of these orbits, so that we can explicitly determine the
fundamental orbit corresponding to a numerically observed stationary periodic pattern.

In order to carry out the construction, we focus on the special case-ofl in (2.9),
which corresponds to the numerically observed steady states. The same analysis can be
done, however, for alk € (0, %), and in the proof below we show how to extend the- 1
results to all these. Fora = 1, the slow vector field oo\ is

u=ep

p = e%au — €%

(4.5)

which is simply (2.9) withy = 0, p = 3 and (v, ¢) = (0, 0). This slow system is linear
with a saddle fixed point a§ = (1/¢2,0), and all orbitsI'c are branches of hyperbolas

given by
2 2
(1—u> - —c (4.6)

parametrized byC (see figure 3{)). Here, we are interested in the orbitg in the sector
below S with C > 0, that is, the area enclosed BY and ¢5, as defined in section 3.1.
These orbits are symmetric about tieaxis, and for each such orbit segment, there exists
a maximum value:pmay of 1 such that(u, p) = (umax 0) is the symmetry point. Instead of
C, umax can also be used to parametrize the orbits(4.6):

1 2
p? =e%a[(1 - 3u)? — (1 — 3umad?] with C = ({23 - umax) . 4.7

Note that the lineg?¥-S correspond taC = 0 or umax = 1/¢3, theu-coordinate of the saddle
S; also,C > 0 corresponds t@mayx < 1/¢°.
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The orbitsI'¢c can intersect the take-off and touch-down curfgsand Ty C M (see
figure 3p)). Below, we will show that there exist periodic solutions to (2.9) which ‘start’
at r = 0 exponentially close tdumax 0,0,0) € M and follow I'c downwards to an
intersectionl"¢ N Ty, then take off for a circuit through the fast field after which they again
touch down onM nearI'c N Ty and follow I'c upwards to ‘end’ on its initial point near
(umax, 0, 0, 0). However, first we need to pay some attention to the interseciiens 7y,
or symmetrically,I'c N Ty. A priori, one would guess th&, might intersec"c more than
once. Using expressions (3.21) and (4.7) it is easy to determine valueg,fosuch that
T, intersectd ¢ twice, but, theu-coordinates of these intersections can never bot® g
(unlessa = 0, see section 4.3). This is a crucial point: if thecoordinate of a take off
point is notO(1), then the analysis of section 3 is not valid, since all coefficients of the
g-expansions in that section are (implicitly) assumed talig¢). Moreover, system (2.9)
is determined such that the excursions through the fast field take place=$o© (1), by
construction. Thus, the expression (3.21) is only valid wh&O(1); and, the intersections
e N T, with u > O(1) must be treated a®(1) intersections for a different scaling af
or better,ii. In other words: the: > O(1) intersections of (3.21) and (4.7) are described
by (2.9) withe < 1, since we chose = 1 above.

It is clear from the combination of (3.21) and (2.9) that an intersection withO(1)
is only possible fotumax = O(1/¢%). Thus, we introduce the ne®@(1) paramete/may by

U,
Umax = ;ax Unax < 1. (4-8)

It follows from (4.7) and (3.21) thaf¢c N T, (with y = 0) is given to leading order by

3bvVb
(wp, pp) = Up(Umnax, pp(Unaw) = (\/‘W«/:ljnz'mx)’ —&,/a(2Umax — Ur%ax)> (4.9)

which we simply denotéu p, pp). Note that (4.9) coincides with (4.2) and (3.7)@Agax 1 1,
this is necessary sincBc merges with¢Y U ¢5 in this limit (see figure 2f)). We can
formulate the main result of this subsection.

Theorem 4.2.For everye sufficiently smallx € (0, g) and for anyUmax < 1 of O(1), the
system (2.9) withy = 0 possesses a periodic orbit which consists of two distinguished parts:
a slow part neal’¢c € M for u > up (4.9) and an excursion through the fast field near the
{u = up} hyperplane.

Remark 4.3. So far, we only considered the cage= 1. All of the above is also valid for
anya € (0, ) (with up exactly as in (4.9)). In section 4.3, we will discuss the special case
a=0.

Proof of theorem 4.2. We fix an arbitrary value ofUnax < 1, which automatically
determines a value af, see (4.7). We recall from section 3 that, for every oibitz, xo)
of (2.9) that is homoclinic toV and that passes through the poigtin the first intersection
of WS(M) and WY (M) in the hyperplandg = 0}, there exist orbits on\1, denoted by
T3, (t; x), such that| Ty (1; xo) — I, (t; x3) | = O(€7%/%) for |t| = O(1/e). Among this
family of homoclinic orbits, there exists a unique one, which we defgte(t; xo), whose
associated take-off and touch-down poinfs = I'c ,,(0; x;) andxg = I'f ,(0; x;) lie
precisely onl'c N T, andI'¢c N Ty, respectively, wheraoi = (up,Fpp,0,0) (4.9), due to
the symmetry (4.1). Alsox, is the forward image ok; under the flow of (4.5), since
both points lie onl"c. In other words, the orbit§¢, I'c ,,, andI'{ ,, are ‘time’ translates
of each other. For completeness, we note that the complete Bihit, homoclinic toM
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(not S) passes through an exponential neighbourhoodof {u > up} twice and itsu and
p coordinates are unbounded for> +oc.

We now show that there exists a periodic orbit () of the type described in the
theorem, whose slow segments are exponentially clodg, ton {u > up}. Consider the
line segment of points(umax 0, v, 0) such that they coordinate satisfiek;exp[—(k/e°)] <
v < Koexp[-(k/e®)] for sufficiently small K1, sufficiently largek,, and for somet > 0,
and all three constants af(1). Note that the time of flight fronk = umax to u = O(L)
alongl'¢ is O(¢~°). Flowing the initial conditions ot forward generates a two-dimensional
manifold £. Furthermore, with the constants K;, and K, chosen appropriately, some of
the orbits onl exit an O(e) neighbourhood ofM nearT'¢ with u > up and some exit
with u < up. Finally, at these exit points; is C1-O(exp[-(c/®)]) close to the invariant
foliation on WY (M) with base points restricted tBe-. This closeness estimate follows
from the modified version (see [27]) of the exchange lemma with an exponentially small
error of [13]. The first application of the theory of the exchange lemma to find periodic
orbits in singularly perturbed systems is given in [27]. Of course, by the symmetry (4.1),
these same arguments show tifaglso liesC1-O(exp[—(c/e®)]) close toWS(M|r.) at
points at which orbits onC exit an O(e) neighbourhood offy N €5 € M in backward
time. Therefore, sincévV (M) and W5 (M) intersect transversely, so mustintersect
itself transversely, exponentially close to the above constructed dvhit, Moreover, due
to the transversality of the intersectiofisN I'c and Ty N I'¢, this intersection ofL with
itself is locally unique, and therefore so is the periodic ofhitthat lies inside it.

To conclude the proof of the theorem, we briefly consider the eagel (¢ > 0). The
idea of the proof in this case is in essence the same, one only has to adapt the length of the
line segment since the ‘time of flight’ fromumax (= O(1/¢¥2*=Y)) to u = O(1) depends
ona (or p). O

Finally, we exploit the fact that the flow oM is linear to explicitly calculate the
leading order length of the period of a periodic orbit(¢+). Since we want to apply the
outcome to numerically observable patterns, we use the totally unscaled system (1.1) with
¢ = 0, where’ denotes differentiation with respect to the spatial variablappearing in
the original PDE (1.1). The only exception is that we det= §%a, as we showed was
necessary in section 2.

First, we note that the leading order of the periodlgf is determined by the time
'p spends neaMM, specifically exponentially close to a hyperbolic orbi (4.7) on M.
Second, we observe that the exact position of the take-off and touch-down pgintspp)
has no leading order influence on the periodl'gf. Hence, the period is determined by
the time it taked ¢ to travel fromu =0, p > 0 tou = 0, p < 0 via the symmetry point
(Umax, 0). Here, we have to be aware that we do not get confused by the notation: the
By (2.4) we see thaf = §*u. Thus, the jump of"p occursO(s§¥) close to{u = 0}, and
neglecting thisO(§%) error has no leading order influence as long as we considerOQ.
Furthermore, we note by (4.8) that the introductionUgf,x coincided with scaling thé of
(2.5) back to the originak, sinces® = § if « = 1, see (2.8). This is also the case for a
general choice of.

It is easy to check that the-coordinate ofl"¢(x) is given by

uc(x) =1 — (1 — Unay cosh8v/ax).

Thus,uc(x) = 0 for x = x¢ such that costd/axc) = 1/(1 — Umay. This equation can be
solved, and by the symmetry (4.1) we conclude that the period, or the I€hRgttf, Iy is
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given to leading order by:
2 1+ /2Umax — U
To = To(U - lo max] 4.10
P P (Umax) 5a g( 1= Uno (4.10)
Equivalently, one can expressax in terms of 7p. If we define the quantitye by
E = e Trdva

then we can use (4.10) to find an explicit expressionUgkx:

(E —1)?

which is less than 1. Note that we did not need an assumption on the vaduim @irder to
determine thi/may, this is clear since the peridfl> (4.10) is independent af to leading
order. It is also possible to determine an approximation for the maximum Vajyeof V,
the second component of equation (1.1), at the peak of the pUlsg:is determined by the
value ofup = iip (4.9) during the jump through the fast field. In the scaled coordinates,
Vmax IS determined to leading order by the maximal value of an unperturbed homoclinic
orbit (3.3) atug = up: vmax = 3b/2up. By scaling backwards using (2.4), we find:
a(2Umax — Ur%ax)

253°/b
to leading order. By (2.4) we see thétt’3v/b = /B, thus we did not need to know the
explicit value ofa to computeVna: it can be avoided by scaling back toB. The same
is also true for the explicit value df i, the minimal value ofs during a period:Unn is

a rescaled version ofp, (4.9), which does not depend explicitly anif we reintroduceB
by (2.4). Thus, to leading order we find:

2Umax — U2 3B+/B
a( max max) Umin _ f . (412)
2\/§ a (2Umax - Ur%ax)

Note that in the limitUnax 1 1 these expressions tend to the valdgsyx and Un,n Of the
one-circuit homoclinic orbit described by theorem 4.1:

1 /a B
Vmax = 2\/; Umin = 33\/:. (4.13)

4.3. The special case =0

Vmax =

Vmax =

Here we focus on the, in a certain sense, degenerateccase0 (and we still assume
y = ¢ = 0). Whena = 0, the scalings (2.4) imply that both (2.5) and (2.9) reduce to the
unscaled system (1.4) with = §2a = ¢2a. Note that the numerical simulations suggested
introducing the parameter > 0; the minimum value of: and the maximum value of
during a ‘pulse excursion’ scale with some poweBdtee section 2 and the simulations in
section 6). Therefore, the choiee= 0 does not seem to correspond to numerically stable
patterns. However, from the point of view of the phase space analysis of sections 4.1 and
4.2, it is an important limit case at which interesting bifurcations occur.

One of the main differences between the cagses 0 anda > O is the fact that the
approximation of (3.6) by (3.7) is no longer valid as remarked at the end of section 3.1;
(3.7) needs to be replaced by

evs p = TFeJa(l—u) (4.14)
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where we still writee instead ofs. More generally, we note that the hyperbolic solutions
I'c of the slow flow onM are now given by

p?=¢e%a[(1—u)? — (1 — Unao?3 Unax < 1 (4.15)

instead of (4.7) (see figurel8)). Since the expressions fdk and Ty still remain as in
(3.21), withd replaced by the unscaldgl (of O(1)), we see that it is possible to have either
zero, one or two intersections @§ with ¢V or I'¢, instead of always just one as is the case
if @ > 0. Theu-coordinate ofl’'c N Ty, is to leading order a solution of

. def 2 2 2 9B°
Fu; Unay) = u [(1_ 1) — (1= Unax ] = 7 1 < Umax (4-16)
by (3.21) and (4.15). The functio (u; Umax) is positive foru € (0, Unax) and has
a maximum atuy, = u,(Unay; us increases monotonically as a function bfna;
uy (0 =0, u, (1) = % The maximal value ofF (u, Unay in the interval [Q Umaxl,
Fi(Umax) = F(us+(Umax), Umax)) also increases monotonically as functionléfax:

Fi(Unad < F(3.1) = £

As a consequence, we find that (4.16) has no solutions if
98 1
- > _

a 16

to leading order. Ifa > 144B3, then (4.16) has two distinct solutions foky, not too

small. Note thatF', (Unaw | F(0,0) = 0 asUnax | O, thus, for any paira, b) such that

a > 144B3 there exists a critical/sy = Usn(a, B) such that (4.15) has two solutions for

Umax > Usn and no solutions fot/max < Usy (in this interpretation we havEsy(a, B) = 1

if @ = 144B3).

The intersectiond’c N T, all correspond to periodic orbits of the type described by
theorem 4.2 (the argument is exactly the same as that in the proof of theorem 4.2). The orbit
I'c merges witheY U ¢5 (3.6) for Umax = 1, thus, the intersectiord: N 7, then correspond
to orbits homoclinic to saddle poirt, as described in theorem 4.1. Combinations of orbits

from both intersections can also be constructed to create more complicated periodic orbits.
We can summarize the above in the following.

or a < 144B3

Theorem 4.3.For every ¢ sufficiently smalle = 0, a > 144B% + O(¢) and for any
Usn(a, B) < Unmax < 1, the system (2.9) witlh = 0 has two distinct slow/fast periodic
orbits. These orbits merge in a saddle node bifurcatioasx | Usn. The periodic orbits
become two distinct orbits homoclinic to the sadfllas Unax © 1. The bifurcation curve
a = 144B° 4+ O(e) corresponds td/sn(a, B) = Unax = 1: here a saddle node bifurcation
of homoclinic orbits takes place. Finally, when= 0, there are no periodic or homoclinic
orbits fora < 144B3 + O(e).

Finally, we make a short remark on the transition frem= 0 to « # 0. Theorem 4.3
seems to contradict theorems 4.1 and 4.2 since somewhere beweef anda # 0
periodic/homoclinic orbits are either created or annihilated. Here, we only consider the
homoclinic orbits and show that a contradiction does not exist. The argument for the
periodic orbits is essentially the same but computationally more cumbersome. We once
more write down¢V for o # 0 (see (3.6) and (3.5) with = 0):

v p=—eJa(l—eie Dy,
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This formula reduces to (4.14) as|, 0 (i.e. p | 1). Using the full expression fotV, the
intersectiontV N T, is determined to leading order by

b
u(l—e3®=Dyy =3p [~
a

Thus, there is only on® (1) solution if ‘¢ is sufficiently small’ However, ifa | 0 then
g3(—D) 4 1 and there can be none or two solutions. Thus, a possible contradiction between
theorems 4.1 and 4.3 is avoided by employing the ‘traditional phtase'sufficiently small’
Theorem .1 holds foe < g9 = gg(a), Sinceey must become ‘very small’ itr becomes
small, i.e. since limo eo(a) = O, see also remark 2.2.

5. Travelling patterns

In this section, we search analytically for solutions of (1.1) that travel with a constant speed
¢ and which do not change shape in a comoving coordinate system. Note that the self-
replicating pulse solutions (numerically) found in [22] are not of this type. It was deduced
in section 2 that should be at leasD(8*+#) for somep > 2—« > 1, wherea measures

the magnitude of: = §*i, the u-coordinate of a homoclinic solution t8 € M of the
unscaled system (1.2) or (1.4), during an excursion through the fast field. In other words,
a measures the magnitude of the minimal value of the solutién, ) of the PDE (1.1) in

the region wheré/ (x, t) is peaked, that isV (x, 7) is not exponentially close to 0.

The main result (theorem 5.1) of this section is that fox @ < g there cannot exist
orbits homoclinic toS in (2.9) forc # 0. Thus, theorem 5.1 implies that the one-parameter
(c) family of ‘dissipative perturbations’ of the symmetric system (1.4) witl O destroys
the entire three-parameter family, ¢, «) of orbits homoclinic toS. There are no travelling
solitary pulse solutions to the PDE (1.1).

This result is surprising in the context of the geometric singular perturbation analysis of
sections 2—4. First, by simple counting arguments alone, one should expect large families
of orbits homoclinic taS. Both the stable and unstable manifoldsSodire two-dimensional,
the phase space is four-dimensional, and there are three free parameters in (1.4), or, by
the scalings, even fivea;b, v, o, p—in (2.9). Second, homoclinic orbits are known to
persist in a wide variety of systems subject to small-amplitude perturbationsy EoB,
theorem 4.1 states that for any> 0, b > 0 and O< « < g there is a homoclinic solution
to S which corresponds to a stationary pulse solution of (1.1); moreover, when O
anda = 0, theorem 4.3 gives the existence of either two or zero orbits homoclini; to
depending on the parametersind B. The fact that the unstable and stable manifolda 6f
still have a two-dimensional intersection surface while there are no parameter combinations
such that the stable and unstable manifoldssaf M intersect fory # 0 shows that the
behaviour of system (2.9) is degenerate wihes 0.

The system’s degeneracy stems in part from the fact that for travelling pulses with
speedc smaller thanO(8@~) (i.e. ¢ > 0 in (2.9)), the magnitude of the evolution of the
slow field—O(e)—is much larger than the perturbation term in the fast field, which is of
O(e?+)). We perform a rather subtle and detailed perturbation analysis, since there must
be some kind of balance between these effects in order for homoclinic orbits to exist. Our
analysis is much more delicate than that performed in section 3.

We focus on the (non-)existence of one-pulse solutions to (2.9) that are homoclinic to
S. In section 3.2, we defined the take-off cur¥ig € M. Orbits ', (t; x,) C M with
initial conditionx, e T, determine the behaviour, fers > 0, of all orbitsT'(z; xo) in the
first intersection oW Y (M) and W5 (M) (with xo € WY (M)YNWS(M)N{g =0, v # 0}).
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Thus, an intersectioniug, py,0,0) of T, and ¢Y—see (3.6)—corresponds to an orbit
['(t; xg) € WY (M) N WS (M) which ‘originates’ onS, i.e. lim_,_,, I'(t) = S. Note that
the intersection pointu, , py . 0, 0) determines the lower endpoint of the interval &hfor
which I'(¢; xo) is close toeY; however, by definition||T"(¢; xo) — (g, Py, 0,0 = O(e)
fort = 0O@Q).

By construction[' (¢, xo) touches down ooV and is exponentially close (for> (9(%))
to an orbitI'},(r; xg) with xg € Ty. Thus,T, is a (one-circuit) homoclinic solution t§
if xar = (uar, par, 0,0) € £5N Ty Let xg = (uo, po, vo, 0) € {AK = 0}, see (3.15). The
correspondinge;” = (13, p;, 0, 0) are given by the expressions (3.21) fiy and 7g. To
constructl’, (¢; xo), we have to impose thatiy, py) € ToN €Y and (ug, pg) € Ty N €5

1 6b/b
—e+/a +hot = ¢ (sayuo — f) + h.o.t.

uo
Y (5.1)
1 6bv/b
+esJa+hot. = ¢ (8"yuo + ) + h.o.t.
2 uo
Adding and subtracting these two equations, we find
6b/'b
& yup = h.ot. and 2/a = Vb +h.ot. (5.2)
uo

Thus, we recover (4.2). Moreover, we conclude that 0, since neithely nor ug can be
smaller thanO(1) by the scalings of section 2, and since we assumedytBa, otherwise
we merely recover the stationary pulse solutions constructed in section 4.

However, so far it is not clear at all that the teehyuy cannot be ‘balanced’ by one
of the higher-order terms in (5.1). In fad, priori, one expects that the computation of
the higher-order terms in (5.1) will lead to equations éorand y. Given the fact that
a travelling wave exists if a solution of system (5.1) can be found, but does not if no
solution exists, we now proceed to find the higher-order terms using the same method
as we employed above. We find the curve & (M) N WY (M) N {g = 0} along
which AK = 0 up to and including as many higher-order terms as necessary. Then,
we derive expressions fdf, and Ty ¢ M and determine the intersectiods N ¢V and
T4 N £5, again obtaining as many higher-order terms as are necessary. To achieve both
of these objectives, we have to extend the expansion (3.11) so that we can compute a
more accurate approximation of an orlits; xo) = (u(¢; xo0), p(¢; xo0), v(¢; x0), ¢ (t; X0))
with initial conditionxg € WS(M)N WY (M) N {g = 0}. Only then can we determine with
sufficient precision the initial conditionsy of the orbitsI"%, (#; x3), which determineT,
and Ty as defined by (3.20).

As we already did in section 3, we will frequently exploit the fact that many
terms, especially those of lower order, in the expansion of the solutibpy =
(u(), p(t), v(t), g(t)) are either odd or even. This simple observation forms the foundation
of the non-existence proof below. This special character of the lower-order terms in the
expansion ofl"(¢) can be interpreted as the remains of the symmetry (4.1) which exists in
the casey = 0: all solutionsT'(¢) = (u(t), p(t), v(t), g(t)) C WY (M) N WS(M) with
'(0) € {g = 0} must havep(0) = 0, which yields, by the symmetry (4.1)i(t) and v(¢)
are evenp(t) andg(z) are odd. Since the non-symmetric dissipative effects are of order
O(e?+)) or higher, it is clear that the lower-order terms in the expansiong©fanduv(r)
must be even as function of while those ofp(¢) andg(z) must be odd. Before we present
the details of the analysis, we state the main result.
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Theorem 5.1.Fory #0,0< o < %’ and0 < § « 1, there are no one-pulse solutions
homoclinic tosS in equation (1.4) (equivalently (2.5) or (2.9)).

Remark 5.1. For ¢ = 0 the result of this theorem follows immediately from the
straightforward application of the ideas developed in section 3 that led to (5.2). The case of
o =0 (i.,e. 8 = 2 — «) is the significant degeneration, recall (2.5); see [5] for a discussion
of what constitutes significant degeneration in singularly perturbed systems. By contrast,
we shall see in the numerical simulations of section 6 that the self-replicating pulses do
travel with this critical speed = O(83A) = O(5C-).

Proof of theorem 5.1. For simplicity we first consider the case0o < 1 andp > 1+§o
so thatp = euv?+ terms smaller tha(3+7) (recallp = 3 whena = 1). These conditions
will minimize the technical difficulties, since we do not have to pay attention to the higher-
order terms in the equation fgr. At the end, we show that the proof is readily generalized
to the cases of > 1 and O< p < 1+ 3o.

We begin by rewriting the main equations (2.9) so that we may more easily refer to
them:

uw=cep

b= e[uv? — e2@HDg _ g@rHlHe) ) 4 (GomD) gy

V=g (5.3)
G =—uv?+bv—e%yq.

From (3.15), we find that an orbit(t) = (u(t), p(), v(), ¢(t)) € WS(M)N WY (M),
with T'(0) € {g = 0}, must havep(0) = ¢+ yu(0) (to leading order). Thus, we need to
adapt and extend (3.11) to:

u(t) = ug + eur(t) + %uz(t) + €2 us o (1) + 3uz(r) + O

p() = ep1(t) + €M prio (1) + €2 p2(t) + &3 pa(t) + €77 paio (1) + O(e?)
v(t) = vo(t; uo) + va(t) + £%va(t) + €% w24, (1) + O(c®)

q(1) = qo(t; uo) + £q1(t) + £2q2(1) + £ g5 (1) + O(e®).

Remark 5.2. In writing (5.4) above, we have used some foreknowledge of the equations at
each order: we did not write down those terms—suck?&a% p,.,, (t) ande3+?us, , (t)—for

which it is clear without much extra analysis that they are identically zero since they need
to satisfy a trivial equation after the expansions are substituted into (2.9).

(5.4)

Here p1,,(t) = %yuo by (3.15), sincep;;, = 0. We may assume, as in section 3,
that u(0) = uo and all higher-order terms aof are 0 atr = 0. In this fashionug again
parametrizes the curv&S(M) N WY(S) N {g = 0}; p(0) and v(0) are determined as
functions ofug up to any order ire. This yields thatu, (1) = %yuot. Also after inserting
(5.4) into (5.3), we immediately find that

u; =0 P1 odd uz even Plio = %)/uo v1=0 qg1=0 (5.5)

see also section 3.
The following simple result helps us to establish the parity (odd/even) properties of
further terms in the expansion of

Lemma 5.2. Let f(¢) and g(¢) be real-analytic functions. Let(z) be a solution of
I+ f()z =g() with z(0) = zo, 2(0) = 0.

Thenz(¢) is an even function of if both f and g are even and;(¢) is odd if g is odd and
20 = 0.
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This lemma is proven by computing the derivativés @i:" inductively and then evaluating
them atr = 0. Applying this lemma to

ii2 + (2uovo — b)vz = —u2v} (5.6)

we see that, is also even (and, odd). Note that it is possible to obtain an explicit
expression forv,. The second-order differential operator consists of a soliton potential
created by the unperturbed homoclinic solutieyiz) with solutions given by associated
Legendre polynomials, see for example problem 5, section 23 of [15]. However, we will
not use this.

Next, we need to extract more information from the condition that (u, p, v, g) lies
in WS(M) N WY (M) in order to determine the initial conditions an(r), p»(), etc. In
other words, we have to impose tha = 0 on T, which using (5.5), amounts to:

o0 o0
AK (uo, po) = 82[ Ipwgdr + @ / (3P140V5 — vqd)
o0 -0

o0 o0
+&3 / %pzvg’ dr + 54/ (%pgvg’ + plvgvz) dr
—00 —0Q

(o]
+e®t) / (3P3+0V5 + P10GV2+6 + PLio Vg2 — 2V qoq2) df + O(e”).
—00

(5.7)

The first integral vanishes, singg(¢) is odd andvy(z) is even. Thus, by imposing K =0
we recoverpii, = %yuo (see (3.15)). Next, the initial value,(0) is determined by the
value of K| at ¢ = 0. We see from the first term in (5.7) that(0) # O, sincep(¢) is
odd andf?OO spwvddr # 0. Hence K |r N {g = 0} = O(£?).

We now determinev,,,(¢) and its initial value. Since the terms in the integrand of
the O(¢?*?)) integral are both even, we conclude that also the accumulated change at the
O(e?+)) level in K along a solution” over the time interval§—oo, 0) and (0, co) are
the same. In fact, the two semi-infinite integrals are equal and each is precisely half of the
full integral. But, the full integral must be identically zero along a persistent homoclinic
solution,T". So, each of the half integrals is zero, as well. Hence, unlke,,, does not
have to ‘correct’ the value oK at+ = 0, and we have,,,(0) = 0. Also, using (5.5), the
equation forv,,, reads

V240 + (200 — D)v2re = —(qo + 3UoVEE).
Therefore, we conclude, by lemma 5.2, that, is an odd function of time.
Higher-order terms in the expansion pfz) along I' are obtained as follows. By
straightforward calculations similar to that fgr(z), we find that p,(r) = p»(0) and

pa(t) = p3(0)+ an odd function. But, from theé (%) and O(¢?) levels of (5.7), we
know that p,(0) = p3(0) = 0, sinceAK must be 0. Next, the equation feg,, reads:

p3+a = U240 U(Z) + 2u0U0U2+a~
Here, we have used > 1+ %o. Thus, p34,(¢) is even, because,, (1) and vy, (t) are
odd.

What do the above terms tell us aban®& and p(0)? They imply that all terms in
the integral at theD(s“+*) level of (5.7) are even. Hence, the requireme&nk = 0
fixes p3.,(0) as a function ofug andy: p3.,(0) = F(ug; y). Of course,F (ug; y) can
be computed explicitly, but this is not needed here. Therefore, the dutkgl = 0 C
WSM)N WY (M) N {qg =0} is given by

p©0) =M p1,(0) + &7 p3.o(0) = 26N yuo + e F(uo; y) + O(e*).  (5.8)
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This completes the first part of the proof.

In this second part of the proof, we constrdigtand Ty to sufficiently high order. For a
givenxo = (o, p(0), v(0), 0) € WS (M)NWY (M), we must finde; = (u3, pz,0,0) € M
such that the orbit§ ,(z; xoi) are exponentially close tB(z; xg) for ¢ > (’)(%). First, we
write expansions fol v (¢; xoi) similar to the expansion above fot(; xg). By (5.3), we
see thatp = o(s®+) « O(s®+)) on M (sincep > 1+ 50), which yields, forr = O(1):
pE(@) = py +0(e®) 5.9)

ut (1) = uf + epit + o(e ™), '

Second, we finc}vat andu§ using the functiong; (r) computed above in the expansion of
p(t) alongT'(z). Let the functionsG;(ug) and P;(t; ug) (j = 1, 3,3+ o) be defined by:

p;j(t; uo) = Gj(ug) + P;(t; uo) with tli[go P;i(t;ug) =0 (j=13.

By construction,

1 3bVb
Gi(uo) = éAp(uo) = %ﬁ (5.10)

where we recall (3.12) and (3.18). In terms of these functions, we may write the expansion
of p(¢) fort > 0 as
p(®) = (eG1+ e p1(0) + e3G3 + e (P31 (0) + Ga1o))

+(EPL(1) + 2 Pa() + 677 Pay, (1))

where we have neglected higher-order terms. Alsoz fer0, the expansion af(¢) along a
homoclinic orbitu(z) is known fromp(¢) and (5.3). Now, the initial conditio;aar = pa'(uo)

is determined by the condition thatt () and p(r) have the same asymptotic behaviour.
Since theP;(¢)’s vanish for larger, we conclude from (5.9) that

pg (o) = £Ga(uo) + £ p114(0) + £2Gauo) + £ (p314(0) + Gayo (o)) + h.oLt.
(5.11)
Also, by defining

Hl(uo)=/0 Py(t; up) dt

we find by (5.3) and (5.9) that
ug (uo) = uo + e?Hy (o) + O(e%). (5.12)

The p§ anduf coordinates off, are clearly implicitly related, since both are functions
of ug by (5.8). Taylor expanding the functior; in the right-hand side of (5.11) abouf
and using (5.12), we get:

pg (o) = £G1(ug) + £ p1.5 (0) + £%(Ga(ug) — Gy (ug) Hi(ug))
+6%7) (P340 (0) + G340 (ug)) + hoo't. (5.13)
Similarly, one must Taylor expand the functioAsand

P16 (0) = guo = g(uar - 82H1(u3_)) + h.o.t.

Therefore, we find
Ty p—eG1—&%(Gs— Gy Hy) — e Gapp = 264 yu
+e®(F — Iy Hy) + hot (5.14)
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wherep = p, u = u$ and G} = dG1/du(u).
Using the parity (odd/even) properties of the functigngs), we immediately find the
analogous results fop, , u, and7y:

Po (o) = —eG1(uo) — £ p115 (0) — £3G3(uo) + e (p314(0)
+G310(ug)) + hoot. (5.15)
ug (o) = ug + &2 Hy (o) + O(e%).

Theu, andp, coordinates fofl, are also implicitly related, since both are functions:gf
by (5.8). This relation can be made explicit in a straightforward manner:

To: p+eG1+e%(Gs — GiHy) — e Gapp = 3 yu
+e®t)(F — 1y Hy) + hot. (5.16)

wherep = py, u = uy, andGj; = dG1/du(u). Note that to leading order, these expressions
(5.14) and (5.16) correspond to those obtainedZfpand Ty in (3.21).

A travelling pulse with a speed = §**#y, such that > 2 — «, or equivalently
o > 0, exists forug such that the corresponding orhiy, (¢; xo), with initial condition
xo = (uo, p(0; ug), v(0; ug), 0), lies in the intersection oW*S(S) and WY (S). In other
words, the take-off poin{ug (uo), pg (o)) of ', must be ontV = WY(S) N M, and
the touch-down pointug (uo), pg (o)) € £5. Thus, we have to compute the intersections
T, N ¢V and Ty N ¢5. Expanding (3.6) yields:

v p = —eva+ et Jau + hot.

where the higher-order terms are smaller tix@a @) for anys > 0. A similar expression
can be obtained fot®. The homoclinic solutior™;, exists forug, y ando which satisfy the
system of equations given i N ¢Y and Ty N €5, whereuo appears only implicitly in the
equations through = uoi(uo) in the expressions (5.16) fdl, and (5.14) forTy. However,
we observe by (5.12) and (5.15) thaf (uo) = ug (uo) up to O(e*), thus we can solve the
system defined by, N ¢Y and Ty N ¢5 in terms ofu = u; = u¢ andy, instead ofug and
y. Adding these two equations, and dividing by+"’, yields:

yu +e%2(2Gs,y — y Hi + 2F) = h.ot. (5.17)

We now observe that it is not possible to solve this equation unless we gdmid: due
to the symmetries there are no terms left which can ‘balancex term yu. Note that
u # 0 by (5.2). This proves the theorem inthe case 8 <1,p > 1+ %a.

Before we go on with the proof of the general case, we make two observations. First, we
note that subtracting the equations N ¢Y andTyN ¢S just gives higher-order corrections
to the critical value ofug (see (5.2)). Second, we note thapriori one might think that
the O(e?) part of (5.17) causes problems, since it also must be zero. However, one can
check, in a straightforward manner, the behaviour of the terms in (5.4) as functipn of
and conclude thafs., = Gs.o (o ¥) = ¥ Garo and F = F(ug; ¥) = ¥ F(uo). Thus, the
O(?) term also disappears when= 0.

The question now is: what happenspifando do not satisfy these conditions? Let us
first consider 1< o < 2. It is easy to see how expansion (5.4) should be modified:
the o-dependence now only occurs at the levels, = usiw-1, Pite = P2to-1)

D3toc = Pat(o—1)1 V246 = U3t-1) and gz, = g3y-1). It is also easy to show that

up, U1, Uz, U3 are eveny, vy, v, vz are evenps, pz2, ps, p4 are odd, andp, q1, g2, g3 are

odd: exactly as in the above case, these solutions do not feel the dissipative terms yet and
thus obey the symmetry (4.1). The equationsifgr,, ps.,, V21, andgzy, are the same as
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those in the case < 1. Thus, the only differences betwe&p Ty in the case O< 0 < 1
and the case k o < 2 are some extraymmetricalterms ofO(¢*) in (5.16) and (5.14).
These terms all cancethen we add the equations fd N ¢V and Tg N £5. Thus: there is
no change in(5.17). Again, we have to conclude that= 0 and that the theorem holds.

The same will happen for any value of: all symmetrical contributions of the
expansions will vanish when we add the equationsZipn ¢V and 7y N £5: (5.17) will
not change, so the theorem holds. The only extra technical complications appear when
o =12 ..., since then we have to split the solutioms,,, p3.s, V21 andgz, IN an
even and an odd part: one part takes care of the dissipative effects and the other obeys (4.1).
Only the first part appears in (5.17) so that it again does not change. A similar technicality
has to be taken into account in the case whpedn less than or equal to-# %a: expansion
(5.4) has to be adapted to include the higher-order effects in the equatighifol5.3)
which appear before the dissipative effects. However, these higher-order terms also obey
symmetry (4.1), thus they will not appreciably influence (5.17). This concludes the proof
of theorem 5.1. O

Remark 5.3. In section 4 we found that = 0 was a special case since the approximation
(3.7) of (3.6) could not be used in this case. In the proof of theorem 5.1 we did not pay
attention to the special case= 0: this is not necessary since it again has no influence on
those terms in the equations f@g N ¢V and Ty N €5 which do not cancel after addition.

Remark 5.4. The proof of theorem 5.1 also implies the non-existence of travelling patterns
consisting of the periodic stationary patterns translating uniformly in time. We recall that
the central argument used to establish theorem 5.1 relies on the adiabatic Melnikov function
AK to find solutions in the transverse intersection of the stable and unstable manifolds of
M, as well as on the calculation @dfp, to insure that the jump in thge coordinate during

a fast excursion precisely bridges the gap betw&érand ¢5. The existence of periodic
patterns whery # 0 relies on precisely these same two calculations. Moreover, the details
are similar: the fast excursion corresponds to an orbit of the fast subsystem that lies in the
transverse intersection of the slow plane’s stable and unstable manifolds, and the jump in
must coincide with the horizontal distance between two points on the same hyperbolic orbit
I'c on M. Since these conditions have the same form as those for the travelling one-pulse
solutions, arguments similar in structure to those used above show that no such solution is
possible.

Remark 5.5. Besides extending to the non-existence of periodic travelling solutions,
theorem 5.1 also extends to show the non-existencevgdulse homoclinic travelling
waves for anyN = O(1), implying that they = 0 symmetry of (2.9) is broken and
all of the orbits given by theorem 4.1 disappear when> 0. Instead of looking for
zeroes of AK as we did for one-pulse orbits, however, one looks for zeroes of the
appropriate inductively definel-pulse adiabatic Melnikov function [28AK y (u, p; €) =
AKyn_1(u, p; e)+AK1(u, p+ei—}f Zf’:’ll 7;), Wherer; denotes the period of the unperturbed
periodic orbit of the fast subsystem with slow paramatand with energy given bAK; 1;

also, AK;(u, p) = AK(u, p), as introduced in section 3. The same proof as given in [28]
for planar Hamiltonian systems depending on a slowly varying parameter gheneplies
here thatA Ky is the correct higher-order adiabatic Melnikov function for (2.9), because the
fact thatAu = O(e?) during each fast excursion relegateso the status of a parameter in
this calculation. Now, since the periodsfori =1, ..., N —1 only diverge logarithmically
ase — 0, the arguments of the terms in the sum AoK y lie close topg, the p—coordinate

of the zero ofAK. Therefore, the simple zeroes AfK y lie close to those oA K, and the
asymptotic expansions for th€—pulse case are similar in structure (with extra log terms
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that cannot be balanced by theterms) to those of the one-pulse case. Thus, the same
argument as used above also rules out the existenc¢é-giulse travelling waves. Note
that of course one requires thatAp equals the horizontal distance betweghand ¢5,
instead of requiring that\p equal that distance.

6. Numerical simulations

In this section, we study the numerically observed dynamics of the PDE (1.1). In order to
do numerical calculations, we have to restricto a bounded interval. However, to obtain
patterns which can be described by the analysis of the previous section we only consider
intervals that are long enough so that the boundaries are ‘far away’ and do not influence
the dynamics. The simulations presented in this section have been repeated several times
on intervals of different lengths. We only show the outcome of simulations on intervals
which are so large that enlarging the intervals did not influence the behaviour. Moreover,
we have done the simulations with different types of boundary conditions and checked that
this also did not change the dynamics inside the interval.

There are three parameters in (1.13; B andé§. We have rescaled and B into
A = 8%a and B = b5%/3 in section 2;a measures the magnitude 8f In this section,
we focus on the choice = 1, this means that, as was observed in [22], we assume that
U = O(8) during a ‘pulse-excursion’ oV. Note that this choice is not essential since
we have seen in section 4.2 that the maximum and minimum valués afid V can be
expressed in an unscaled form, independent of an explicit value e (4.12) and (4.13).
Reynolds, Pearson, Ponce-Dawson, and Hasslacher observed self-replicating pulse patterns
for the choices? = 0.01, A = 0.02 andB = 0.079 in (1.1) see figure 1 of [22] and figure 2
of [3]. These values correspond in our scalingate= 2 andb ~ 0.37. Below, we shall
frequently choosé? = 0.01, a = 2 andb = 0.4, so that we can compare with the results
of [22].

6.1. The code

We used a moving-grid code to integrate system (1.1). The code, which is described in
detail in [2], is designed to numerically solve systems of time-dependent PDE models
in one space dimension having solutions with steep gradients in space and time. The
moving-grid technigue in the code is based on a Lagrangian description of the PDE model
combined with a smoothed-equidistribution principle to define the grid positions at each
time level. The dynamically moving adaptive grid is coupled to a discretization method
which automatically discretizes the spatial part of the user-defined PDE system following the
method-of-lines approach. The spatial discretization and the time-integration are carried out
with a nonlinear Galerkin method and an implicit (stiffy BDF method with variable order
and step-size control, respectively. It must be noted that application of the moving-grid
code is not restricted to reaction-diffusion equations of type (1.1). The interested reader is
referred to [2] and [33], where PDEs from various other application areas have been solved
using this technique.

The boundary conditions are of Dirichlet type:

UG=0,nN=UG=211=1 VE=01)=V@E=11)=0.

Neumann conditions were also used, but did not influence the inner solutions. Moreover,
the initial data for the results we report consists of a sharp pulse centred in the middle of
the spatial domainU (¥, 0) = 1 — 3 sin'®(z %), andV (&, = 0) = ] sin(z%). The spatial
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variablex is a rescaled version of the spatial variablén (1.1): x has been scaled such
that the numerical simulations always take place onxteterval [0, 1].

Since we wanted to be able to observe patterns described by the analysis of this paper,
we focused in the numerical simulations on valueg @ndb which areO(1) with respect
to 5. Our search in thda, b)-parameter space of (1.1) has not yet found patterns that
differ essentially from the ones described and shown below (by contrast, for larges
have observed various different patterns; an example is shown in section 7, figure 10, of a
structurally different pattern at = 9, b = 0.4 ands? = 0.01). Moreover, especially the
dynamic splittings—the self-replications of the travelling pulses—are driven by processes
which are very sensitive to the numerical accuracy: if there are not enough grid points
‘on’ a V-pulse, a splitting just cannot occur, or occurs much later. Thus, if one does not
use enough grid points (or a non-moving grid) one is tempted to conclude that the self-
replicating process does not occur. This observation also means that the error made by
the code can ‘explode’ in a very short amount of time. For all numerical tests we have
used 400 moving grid points to take care of the sharp pulses. In one case (20 pulses,
tend = 20000) 600 grid points had to be used (figures 7 and 8). Note that a conventional
non-moving uniform would have required several (4-5) times more grid points than used
for the moving-grid case.

Moreover, we found that decreasifigncreased both the (temporal) distance between
successive splittings and the number of necessary grid points so drastically that one
approaches very rapidly the limits of the machine one is working onsfor 0.01 if
one is interested in the long-time behaviour of the self-replicating patterns (see section 6.3
and figures 7 and 8).

Before we start the description of the patterns observed in the numerical simulations we
remark on the magnitude ¢f both as a small quantity in our asymptotic analysis and as
part of the data in the numerical simulations. First we note that by our scaliags’® (see
(2.8),a = 1) is the ‘true’ asymptotically small quantity of the analysis. This means that a
‘standard’ choice ot = 0.1 corresponds to a value 6f = 10 as input in the numerical
simulations of equation (1.1). On the other hand we noted that choicé$ ef 0.003
are already near the boundary of the capacity of the hardware and software one is using.
Thus, theoretically, one expects only a small overlap between the numerically ‘safe’ and
the analytically ‘safe’ regions. However, we shall see that there is a good qualitative and
guantitative agreement between the analytical predictions and the numerical observations.

6.2. Stationary behaviour and a transition region

In the bifurcation analysis we performed, we fixedt a certain valueh € (0.2, 1), and
varieda over a certain rangey € (0.2, 5) (approximately). For each parameter pair, we
repeated the simulations for several valuess,obut we found that the value @f did not

have an essential influence on the dynamics, except for the time scale of the evolution. For
a > 0 ‘too small’, we observed the following behaviour:

imUx,nH=1 lim V(x,t)=0.
1—00 —>00

Note that this is not completely surprising, since the trivial patiéfin= 1, V = 0) is an
asymptotically stable solution of (1.1) on the unbounded domain.

As we increase:, we enter a transition region between the trivial behaviour and the
self-replicating pulse regime. Moreover, we find that the transition region is not a clear
one-dimensional bifurcation curve in the, b)-parameter space, and the behaviour in the
transition region depends rather subtly on the initial conditions and small perturbations.
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First, we observe stable, stationary solitary-pulse solutions of the type constructed in
section 4.1 (see figure 1 in section 2). These solutions of (1.1) are precisely the one-circuit
slow/fast homoclinic described by theorem 4.1, and they seem to be stable in this transition
region (see below for a quantitative check). In figure 1, we show plot& @f, ) and
V(x,t) for a = 1 andb = 0.6. Note that they are insensitive to the details of the initial
one-pulse concentration.

Second, we find parameter values at which initial solitary pulses split into two non-
travelling pulses. These depend sensitively on the initial concentrations in the interval.
These patterns doot correspond to the two-circuit homoclinic solutions described by
theorem 4.1 § = 2): V becomes exponentially small between the two fast excursions,
while the two-circuit pulse described by theorem 4.1 does not approach the slow manifold
M closer thanO(/¢) during its circuits through the fast field. Using the symmetry (4.1)
it is not hard to show that such a solution to the stationary problem (1.4) or (2.9) with
y = 0 does not exist: a homoclinic solution which takes oft‘at 7,, can only touch down
exactly on¢’ N Ty. This is confirmed by the numerics: although the pulses do not move,
the two-pulse pattern is not stationary. In figure 5, we see that the heights of the two pulses
‘dance’ up and down until one of them disappears completely and only a stationary solitary
pulse remains. Note that this pulse is not located exactly in the middle of-th&rval,
contrary to the initial values o/ and V. We found that the length and the outcome of this
process (i.e. the answer to the question: ‘which pulse disappears after what period of time?’)
depends very sensitively on small perturbations. It also depends on the width of the initial
V-pulse whether the solution8 undergoes an initial splitting, as in figure 5, or whether
it does not. In the latter case, the initial solution deforms immediately into a stationary
solitary peak described by theorem A & 1) (see figure H): the pulse is exactly at the
middle of thex-interval).

We now compare the outcome of the numerical simulations with the analytical results
of section 4.1. We show numerically stable stationary one-pulses forl, b = 0.6, with
82 = 0.01 in figure 16) and with$2 = 0.003 in figure 16). Numerically, we find:

§2=0.01: Vimax ~ 1.11 Upin ~ 0.16

82 =10.003: Vinax ~ 1.49 Upin ~ 0.08.
Since B = b6%/3, (4.13) implies:

82=0.01: Vinax ~ 1.39 Upin ~ 0.14

82 =10.003: Vinax =~ 1.69 Unin ~ 0.076

to leading order. The leading-order correctionit@y, the O(1) scaled version oV ay, IS
O(e). By (2.4) we see thaVpax is O(2) to leading order, with: = §%/3 ((2.8) anda = 1).
We conclude that the leading-order correction in the above-determined theoretical value of
Vmax is O(1). The differences between the numerically observed valueg,gf and the
theoretical predictions are clearly within this range. Furthermore, we note that the relative
error, |[Vnum _ ytheo /yynum - decreases a is decreased (frome 0.25 for §2 = 0.01 to
~ 0.13 for 8 = 0.003) and that these errors are again well within the theoretical bound
of O(e) (¢ ~ 0.46 for §2 = 0.01 ande ~ 0.38 for 2 = 0.003). A similar argument
yields that the distance between the numerically observed valué,gfand the above
theoretical prediction is within the leading order correction to the theoretical valUg,pf
of O(e8) = O(e*) (¢* ~ 0.046 for§2 = 0.01, ¢* ~ 0.021 for §2 = 0.003).

One might expect that it should be possible to find a (numerically stable) two-circuit
pulse solution—as described by theorem 4.1Noe 2—in this transition region, by varying
the initial conditions. We did not do an extensive numerical search to find these solutions;
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Figure 5. A pair of dancing pulses observed in numerical simulations of (1.1) with 0.6,
b = 0.4, ands? = 0.01: (@) at times = 250; () at times = 350; ) at time+ = 450; and
(d) at time s = 500, showing that only the left pulse survives as a stable solitary pulse in the

asymptotic state. The concentratidn, is given by a broken curve, and the concentratign,
is denoted by a full curve.

however, we did find that in the transition from initial data which splits into two solitary
‘dancing’ pulses to a non-splitting initial condition, there exist initial conditions that initiate
solutions which are like the stationary two-circuit pulse for a very long time (but, eventually,
V becomes exponentially small between the peaks and the ‘dancing behaviour’ starts).

6.3. Self-replicating pulses

For values ofa above this transition region (with still fixed), we observe that the two
solitary pulses created from the initial condition at the first, stationary splitting begin to
move away from each other, both with the same, constant speed (see below for a discussion
on the magnitude of this speed). We know from section 5 that these patterns cannot be
interpreted as some kind of nonlinear superposition of two solitary travelling pulses with
speeds and —c: these solutions do not exist. This observation is remarkable, if one only
pays attention to th& solution, sinceV seems to be exponentially small between the two
travelling peaks (see figure & wherea = 2). However,U does not ‘return’ to 1 in
between the pulses, which should be the case for the solitary travelling waves studied in
section 5. On the other hand, the maximum valué&/ dietween the two travellinyy -pulses

grows towards 1 as the distance between these pulses grows: the travelling pulses begin to
resemble the non-existing solitary pulses more and more. A conflict with the non-existence
result of theorem 5.1 would occur if these pulses go on travelling away from each other
with constant speed, without changing shape, while the valug afpproaches 1 ‘in the
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Figure 6. The dynamic pulse-splitting process at times) ( = 2100; p) + = 2150; €)

t = 2200; and §) r = 2400. New pulses are formed on the trailing (inner) edges of the existing
two pulses (near the-values corresponding to the inflection pointstof and are sent into the
centre of the domain. Here = 2, b = 0.4, ands? = 0.01.

middle’: both pulses then become identical to the solitary travelling pulses considered in
section 5.

Therefore, something else must happen: doe= 2, we see in figures Bj—(d) that
both V pulses split into two similar travelling pulses (with distinct speed) yielding a pattern
of four moving pulses. After yet more time, all four of theBepulses split once again,
and this process of replication continues for the outermost two pulses on each side until an
equilibrium state is reached. In fact, the number of peaks a domain can support depends on
a andb. In figure 7, we show the solutiorld and V at timer = 20000 for the choice of
parameters: = 2, b = 0.4 ands? = 0.01. There are 20 peaks present.

For the same simulation shown in figure 7, we plot the positions of the grid points of
our code as functions of time in figure 8. The position of thepulses is revealed by a
local concentration of grid points. Thus, due to the character of the code, we can follow
the pulses and their self-replicating behaviour by plotting the positions of the grid points.
Note that the horizontal bands in figure 8 just indicate the fact that one (or more) of the
pulses ‘needs more grid points’ since it is near a self-replication: the other pulses ‘send’
some of ‘their’ grid points to the self-replicating one(s). Thus, the horizontal bands suggest
dynamical behaviour for a large-interval, but, the dynamics are only local, near a number
of self-replicating pulses, for the solutiow&, V) of the PDE (1.1).

From these observations, as well as from those of many other initial data, it seems
priori that the solutions to (1.1) witlh (a) and B (b) in the splitting region have a strictly
non-stationary behaviour. However, we observe in figure 8 that only the outermost pairs of
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Figure 7. The pulse pattern observed ra&= 20000 fora = 2, b = 0.4, ands? = 0.01, where
600 moving grid points were used.

pulses continue the self-replicating process: after a pulse has been created by a ‘boundary
pulse’ it only splits just one more time. The two resulting pulses are then enclosed by other
pulses: it is as if the pulses are repelling each other. As a consequence, we observe that the
core of the pattern created by the self-replicating processiatinary, periodic pattern of
the type described by theorem 4iPclearly has distinguished slow and fast parts. This can
also be seen in figure 7: the pattern in the middle (middle 6 peaks) is clearly periddic in
and V. It follows from grid dynamics (figure 8) that this periodic core is also stationary.
Note also that the splittings of the boundary pulses and their latest images have a tendency to
occur simultaneously after sufficiently large times in this simulation. Lastly, we remark that
in addition to this outer pair splitting process, we have observed other sequences of pulse
splittings. However, after ‘long’ times, all of these patterns had periodic cores described by
the stationary periodic solutions of theorem 4.2. Moreover,Uithg: and 7, of these cores
were accurately related by the theoretically deduced equations (4.10) and (4.11).

This statement is also readily verified quantitatively in the simulations. We make a
guantitative comparison of the periodic core properties of the pattern in figure 7 with the

periodic solutions constructed in section 4.2. Numerically, for the case shown in figure 7,
we find that:

TP ~ 20 Umax ~ 0.54 Vmax ~ 126 Umm ~ 0.07.

We know from section 4.2 thafp, and Unax are related by (4.10) or (4.11). Inserting
Umax = 0.54 into (4.10) gives7, ~ 19.97 (wherea = 2, b = 0.4 and§? = 0.01).
Equivalently, we find that inserting = 20 into (4.11) yields a value dfh,x which agrees
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Figure 8. Positions of the grid points as functions of time for the moving grid code described
in section 6.1 for the same parameters as used in figure 7. Note that the first dynamic splitting
occurs earlier than in figure 6 (although= 2, » = 0.4 ands2 = 0.01 in both cases): the
simulations have different initial conditions (the initial conditions are the same in the rescaled
variablex).

with the numerically observed one. The fact that the numerically measured val@gs of

and Unmax Obey the relations (4.10) and (4.11) with this accuracy is a bit surprising: both
(4.10) and (4.11) are just the leading-order approximations. Nevertheless, this result at least
indicates that the stationary periodic patterns at the core of the self-replicating patterns are
described by the slow/fast periodic solutions of theorem 4.2. Moreover, we can use (4.12)
to ‘predict’ the leading-order values Ofnax and Un,n for this pattern: Vihax ~ 2.14 and

Unmin ~ 0.06. Both values differ from the numerically observed values by an amount which

is of the order of the leading-order corrections to (4.12) determined above.

Finally, we remark on the speefic of the ‘boundary pulses’ of the self-replicating
pattern. It is clear from figure 8 that this speed is (at least at leading order) constant for all
time. We noted that this speed approaches ze gecreases towards the above described
transition region. Thus; clearly depends on andb. However,c also depends of. We
have seen in section 5 that the magnitudec ofith respect tos does have an essential
influence on the singular perturbation analysis. Therefore, we performed the following
experiment: we fixed = 2 andb = 0.4, and we varied?. We waited until the ‘boundary
pulses’ were created and moved, and then we measured their speedfigure 9, we
present a log—log plot of this as a function ofs: ¢ is clearly ©(5%). Note that this is
exactly the value at which significant degeneration of the asymptotic analysis occurs, as
encountered in section 5.
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Figure 9. The log-log plot of the speed with which the outermost pulses travel as a function
of § showing that this speed scales@&?); a andb are kept fixed at = 2, b = 0.4.

7. Discussion

We have proven the existence of single-pulse solutions fowaamdb (the rescaled versions

(2.4) of A and B in (1.1)). However, only those witlh and b in the transition region
described in section 6 are observed, and thus probably stable. A similar selection occurs for
the periodic patterns constructed in section 4.2: for @anfy and Umax < 1 (Umax = O(1))

there exists a stationary periodic pulse pattern, but periodic patterns are only observed for
parameter valueg, b) in the self-replicating pulse region (section 6). MoreoV&ax iS

also selected by the process. Furthermore, the numerical simulations suggest that also the
parameterx, which we can choose in the interval,[g)) in the analysis of section 4, is

the subject of a selection process: our simulations and those in [22] suggeat #hdt

(note thatx is determined by the magnitude Bfwith respect taS (remark 2.4), therefore,

it is not possible to determine exactly, for given values o8 and B). Determining the
analytical origin of these selection mechanisms is the subject of future research.

In addition, the pulse-splitting process requires considerable further analysis. A chemical
explanation has been given for when the dynamic splitting should commence—indicating
that the onset time coincides with the time at which the flux{ointo the tail of the
moving pulse exceeds the minimum level needed to sustain a new pulse [22]. A formal
mathematical analysis for pulse-splitting has been developed in [22,23]. Our simulations
suggest that the process occurs largely at the ‘fronts’ of the moving-pulse pattern. In
particular, for the simulation reported in section 6.3, the outermost pair of moving pulses
on each side were the ones that self replicated, and as time progressed, these self-replicating
edge pairs created the stationary, periodic core of the self-replicating pulse pattern. This
observation is consistent with the chemistry explanation in the sense that only between the
new, outermost, pulses is there enowglpresent (both from the as yet unconsumed supply
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Figure 10. A plot of the solution to (1.1) with parameter O(1): a = 9, b = 0.4, 82 = 0.01:
(a) atr = 100, p) atr = 500, and ¢) atr = 1000. As in figure 7 there is a stationary periodic
core, but it has not been created by a pulse-splitting process.

available in the domain and from the reservoir) to create new pulses. By contrast, in the
core region, all of thé/ supplied by the reservoir is needed to maintain the already existing
pulses, and there is very little excess (free, unconsuifeid) between the pulses.

Although we did not perform any detailed analysis on the system with O(52), we
believe that an approach similar to that established here—based on a different scaling of
the parameters and variables—can be used in this region of phase space. The combination
of such an analysis and simulations might give another explanation of the origin of the
self-replicating pulse process. In figure 10, we plot the results of a simulationawit!9,
b = 0.4 ands? = 0.01. Thus, it is not natural to assume thiat= 8?2 = O(8%). However,
just as in the case = O(1) a first stationary splitting occurs, buY, does not become
exponentially small between the two travelling boundary pulses (figura)LOkloreover,
we observe that/ remains small in that region: it seems that the slow manifelds much
less important in this case. No pulse-splitting occurs, but, after some time there is again a
stationary periodic core (see figure bp@and €)). This core is now formed by a stationary
solution which ‘lives’ entirely in the fast field. As we decreasere observe that the pulse-
splitting process starts as soon as the periodic orbit at the core of the pattern touches down on
M. For completeness we note that the choice of parameters for the simulation of figure 10 is
a little bit outside the chemical relevant region sinte= 8% = 0.09 > B = b§%3 ~ 0.086
(see remark 2.3). However, the pattern does not change significantly if we dearease
little such thatA < B.
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Note that it is not hard to show that the ‘purely fast’ stationary periodic orbits do not
exist in our scaled system (2.5) and (2.9): the accumulated changeaiong such an
orbit cannot be zero (cf (3.18)). However, such orbits can be created by a Hopf bifurcation
around critical points in the fast field of the unscaled (1.4) system which exist-if4B?
(see also [11,22]). These critical points did not appear in this paper gincannot be
larger than #?2 by the scalings ((2.4xy < g) derived in this paper. Analogously, one can
say that the fact that the pulse patterns are not observed for valuésaofl B outside
the region defined by our scalings, justifies these scalings: they were derived as necessary
conditions for the existence of the pulse-like solutions (see section 2). Thus, the phenomena
described above cannot be described by the main equations of this paper, (2.5) and (2.9),
but we believe that they can be studied by methods similar to those employed in this paper.
It is clear that all of the necessary ingredients of the analysis in this paper also exist in
other systems of the general form:

U

— =V + f1(U, V)

ot (7.2)
WV s

e =8VV + f,(U,V)

where f1 and f, satisfy some additional conditions. In particular, the nonlinearities must be
such that the fast kinetics have one or more equilibria connected to themselves by homoclinic
or heteroclinic orbits. In addition, the slow subsystems must possess either equilibria with
stable and unstable manifolds or other orbit segments that are transverse to the appropriate
take-off and touch-down curves defined by the fast homoclinics and/or heteroclinics. Once
again one can check numerically whether the constructed patterns can be stable. Moreover,
whether the non-existence of travelling waves plays a role in signalling that a general system
exhibits pulse replication can also be investigated, sapeori it is not clear that general
systems of the form (7.1) which do have (stable) stationary pulse-like patterns share the
nonexistence result of (1.1).
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Appendix. Details of the scaling analysis

In this appendix, we derive the scalings (2.4) presented in section 2. We begin by plugging
in the rescaled: andy (2.3) into the fast field, which is the fast, ¢) part of (1.4):

V=0, =

=t - (A1)
q=q,=—8Pq — 8*v* + Bu.



Pattern formation in the one-dimensional Gray—Scott model 561

The fast system (A.1) is linear in the limit— O (if « > 0) and has no solutions which are
homoclinic to the saddle poiriv, ¢) = (0, 0). This is a crucial deficiency of the fast field,
since this—again—means that a solution which leaves the neighbourhogd o&nnot
return to M. Thus, in order to be able to construct homoclinic solutionss tave need
scalings ofv, ¢ and B such that the leading-order fast field supports homoclinic solutions.
In particular, we introduce = §~"v, r > 0 andg = §°¢; herer ands are free parameters
which will be determined later on. We balance the® and Bv terms in (A.1) by setting

B = 8@ b, We now observe that, = O"*) and g, = O@2~9). We impose
r+s = a —2r —s, since the distinguished limit in the second-ordexquation occurs when

v and its derivative; evolve on the same time scale. Thess %(a — 3r). Introducing the

new independent variablg= 8%(“*”;7, (A.1) transforms to:

A

U;,:c]

(A.2)
Gy = —00? + bd

- 8%(2ﬂ—a+r));c}_

This equation has all necessary features so that it can serve as fast field in the rescaled
version of (1.4). Note that we again have to impose that the ‘friction’ teénis o(1), i.e.
28—a+r>0.

When we introduce all the above scalings, supplemented with a scaling fer= §'p
for somes > 0, into the slow part of (1.4), we find that; = O(§2¢+2+2-3) and
pi = O(32@re=3-2) (je. the fii%-term is the leading order term ip;, the other terms
in p; are assumed to bgb). Since the distinguished limit also occurs when the dependent
variable—herei—varies at the same rate as its derivative, werseto — r. This gives
the following rescaled equations:

flﬁ _ 8%(270171‘)13

Da — 8%(2*01*” A2 6(1+/3+r) 5h 5(2+2r7a) 2+2r (A3)
Py = [ 194 a+sé

ai)
with the additional assumption 2« — r > 0, so that thgu, p)-subsystem remains slow
compared to th&v, g)-subsystem.

Combining the fast and the slow subsystems (A.2) and (A.3), we note that there are two
different leading-order perturbation scales: the slow ‘time’-séal&*") in (A.3) and the
‘friction’-term of O(82-2+") in (A.2). It follows from the analysis presented in section 3
that the stable and unstable manifolds of the slow manifbldcan only intersect if the
friction-term is of the same order as the square of the Ieading-order&fé?rrf*’) in (A.3)

(i.e. it is of O(8~*~")) for the existence of the desired homoclinic solutign(n). Thus,

a homoclinic solutionl;(n) to S € M can only exist if the leading-order perturbation
in the complete(a, p, v, §)-system isO(822*=")). Hence, when a solution makes an
excursion through the fast field, one expects that lotnd p will change by an amount

of O(822=2=). Sincep = 8@ p, this implies that an excursion through the fast field
modifies p by an amount of0(52@=3"). The homoclinic solutiorT,(n) must jump’
from ¢V to ¢5 (2.2) by such an excursion through the fast field. Due to the scaling (2.1),
we know that¢V and ¢’ are O(8) apart; thus, we have to chooseuch that it satisfies the
following ‘jump condition’: 3(2+a —3r) =1 or r = %a. With this value ofr, one
directly obtains the scalings given in (2.4).
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