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Abstract. In this work, we analyse a pair of one-dimensional coupled reaction-diffusion
equations known as the Gray–Scott model, in which self-replicating patterns have been observed.
We focus on stationary and travelling patterns, and begin by deriving the asymptotic scaling of
the parameters and variables necessary for the analysis of these patterns. Single-pulse and multi-
pulse stationary waves are shown to exist in the appropriately scaled equations on the infinite
line. A (single) pulse is a narrow interval in which the concentrationU of one chemical is
small, while that of the second,V , is large, and outside of which the concentrationU tends
(slowly) to the homogeneous steady stateU ≡ 1, while V is everywhere close toV ≡ 0. In
addition, we establish the existence of a plethora of periodic steady states consisting of periodic
arrays of pulses interspersed by intervals in which the concentrationV is exponentially small
andU varies slowly. These periodic states are spatially inhomogeneous steady patterns whose
length scales are determined exclusively by the reactions of the chemicals and their diffusions,
and not by other mechanisms such as boundary conditions. A complete bifurcation study of
these solutions is presented. We also establish the non-existence of travelling solitary pulses in
this system. This non-existence result reflects the system’s degeneracy and indicates that some
event, for example pulse splitting, ‘must’ occur when two pulses move apart from each other
(as has been observed in simulations): these pulses evolve towards the non-existent travelling
solitary pulses. The main mathematical techniques employed in this analysis of the stationary
and travelling patterns are geometric singular perturbation theory and adiabatic Melnikov theory.

Finally, the theoretical results are compared to those obtained from direct numerical
simulation of the coupled partial differential equations on a ‘very large’ domain, using a moving
grid code. It has been checked that the boundaries do not influence the dynamics. A subset of
the family of stationary single pulses appears to be stable. This subset determines the boundary
of a region in parameter space in which the self-replicating process takes place. In that region,
we observe that the core of a time-dependent self-replicating pattern turns out to be precisely a
stationary periodic pulse pattern of the type that we construct. Moreover, the simulations reveal
some other essential components of the pulse-splitting process and provide an important guide
to further analysis.

AMS classification scheme numbers: 35K57, 34C37, 35B10, 35B32, 35Q80, 34E15, 65M06,
34C30

1. Introduction

Self-replicating patterns have recently been observed in a reaction-diffusion system
[21, 17, 22]. Numerical simulations show that the irreversible Gray–Scott model exhibits a
broad array of new patterns, including spots that self replicate in a self-sustaining fashion
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and develop into a variety of time-dependent and time-independent asymptotic states in
two dimensions [21], as well as pulses that self replicate in one dimension [22]. The two-
dimensional self-replicating spots have also been observed experimentally in a ferrocyanide–
iodate–sulfite reaction [17]. See [16] for more details of the set-up. Moreover, those same
experiments led to the discovery of other new patterns, such as annular patterns emerging
from circular spots [17].

The irreversible Gray–Scott model governs the chemical reactionsU + 2V → 3V and
V → P in a gel reactor, whereV catalyses its own reaction withU andP is an inert product
(see [9–11]). The gel reactor is coupled to a reservoir in which the concentrations ofU
andV are maintained constant. This coupling also results in both chemicals being removed
from the reactor in a concentration-dependent fashion. Furthermore, the diffusivities,DU

andDV , of the chemicalsU andV, respectively, can be any chemically relevant positive
numbers. For example, in the one-dimensional work [22], pulse splitting was observed when
DU = 1 andDV = δ2 = 0.01. By contrast, in the two-dimensional numerical simulations
[21], the spot replication was observed withDU = 2DV = 2×10−5, and other studies have
focused on the case of equal or nearly equal diffusivities, see for example [20, 25, 30].

Letting U = U(x, t) andV = V (x, t) denote the concentrations of the two chemical
speciesU andV, the pair of coupled reaction-diffusion equations governing these reactions
is:

∂U

∂t
= DU∇2U − UV 2+ A(1− U)

∂V

∂t
= DV∇2V + UV 2− BV.

Here,A denotes the rate at whichU is fed from the reservoir into the reactor (and this
same feed process takesU andV out in a concentration-dependent way), the concentration
of V in the reservoir is assumed to be zero, andB is the sum ofA and the rate constant
k2, which equals the rate at whichV is converted to an inert product.

A pulse in one space dimension (and similarly a spot in two space dimensions) may
loosely be defined as an interval (region) of highV and lowU . Outside of such an interval
(region)U is near one andV is near zero. A pulse widens (a spot grows) when the flux
of U into it is high enough to sustain the first reaction and replenish the amount of the
chemicalV that leaves the pulse (spot) through diffusion and the coupling to the reservoir.
Moreover, as a pulse widens (or a spot grows), the middle can quickly cave in (the spot
gets pinched into two) when insufficient amounts ofU reach the middle to sustain a highV .
Thus, a pulse (spot) can undergo a division process, and the two pulses (spots) can move
away from each other using up theU from adjacent intervals (regions). This initial splitting
is stationary in the sense that the centre of the pattern stays at the middle of the domain.
Further, dynamic pulse splitting occurs when there is enoughU behind the moving pulse,
and a new pulse emerges on the trailing edge.

In order to study this rich pulse dynamics mathematically, we analyse the irreversible
Gray–Scott model in one space dimension (x ∈ R and∇2 = ∂2/∂x2) on the infinite line:

∂U

∂t
= ∇2U − UV 2+ A(1− U)

∂V

∂t
= δ2∇2V + UV 2− BV

(1.1)

where 0< δ2 � 1. The choice ofDU = 1 andDV = δ2 � 1 here follows that of [22],
where it is explained that this singular limit ‘clarifies which physical processes are dominant
as the system evolves’.
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The numerical simulations of [22] and of this work (see section 6) suggest that neither
U nor V areO(1) throughout the whole pattern. For instance, during a peak inV , it is
observed thatV is ‘large’ (� 1), while U becomes ‘small’ (� 1). Therefore, we first
perform a detailed scaling analysis that results in a scaled system in which the variables and
parameters areO(1). Based on geometrical arguments, these scalings enable us to deduce
thatA must beO(δ2) in (1.1) in order for the patterns we find to exist. They also lead us
to the correct asymptotic scalings for the variables and the other parameterB.

Our main results are then the following. First, we prove the existence of single-pulse and
multi-pulse stationary states for (1.1) on the infinite line. The detailed asymptotic scalings
are derived specifically for this result, and are shown to be essential. As remarked above,A

must scale with the small parameterδ2 in order for these pulses to exist. Moreover, we show
that the relevant scalings for a pulse areU = O(δα), V = O(δ−α/3), andB = O(δ2α/3),
whereα ∈ [0, 3

2). In between the pulses of a multi-pulse solution,V becomes� 1 but
not too small; whereas, in the semi-infinite intervals surrounding the pulses,V becomes
exponentially small. Also, we are able to construct these solutions for each (rescaled)A

andB andα ∈ [0, 3
2).

Second, we establish the existence of a plethora of periodic stationary states for (1.1) on
the infinite line (equivalently for (1.1) on a finite interval with periodic boundary conditions).
These periodic states consist of a infinite array of narrow, equally spaced pulses. The same
scalings derived for the above stationary multi-pulse states are also central to the analysis
here. During a pulse event, the dependent variablesU andV scale exactly as in the above
multi-pulse states. Here, however,V is exponentially small in the intervals between pulses.
Most importantly, these periodic states are observed to form the core regions of the time-
dependent self-replicating pulse patterns on finite domains, and it is found that their intrinsic
length scale is determined exclusively by the reaction and diffusion of the chemicals, and
not by boundary effects.

Third, the travelling pulses observed in the simulations of [22] and of this work are, for
large time intervals, more or less stationary in a co-moving frame. Hence, it is natural to try
to construct travelling pulses of the same type as the stationary pulses. However, we prove
that these travelling solutions cannot exist. Therefore, this non-existence result shows that,
while the numerically observed moving pulses begin to resemble the non-existing travelling
solitary pulses more and more, they must undergo some transformation, such as pulse
splitting. Moreover, we note that the analysis needed to obtain this result, while again
depending on the above scaling, is delicate, since the non-existence of travelling waves
violates simple generic counting arguments (see section 5).

Finally, we present the results of some numerical simulations of (1.1) on finite, but
sufficiently large, domains with various types of boundary conditions, using a moving
grid code. These simulation results corroborate our analytical results and confirm that the
patterns do not form in response to boundary conditions. In the (rescaled)(A,B)-parameter
plane we determine a transition region which distinguishes two regions: a trivial one where
(U, V ) tend to the asymptotically stable homogeneous ‘pattern’U ≡ 1, V ≡ 0, and the
so-called self-replicating pulse region. In this transition region we observe the stationary
single-pulse patterns described above. Above the transition region, namely in the self-
replicating pulse region, one does not expect,a priori, stationary behaviour. Nevertheless,
we observe that (after quite a long time) the self-replicating patterns on an unbounded
domain evolve towards a stationary periodic pulse pattern that grows at both sides by a
self-replication process which only involves the two travelling ‘boundary pulses’ and their
most recently created ‘images’. The periodic ‘core’ is once again of the type described
above. We have made a quantitative check between the observed patterns and those we
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constructed analytically and found a very good agreement. Note that the periodic core
itself turns out to be the asymptotically stable pattern if one considers a finite domain with
periodic boundary conditions (see figure 1 in [22]). Moreover, the simulations reveal some
other essential components of the pulse-splitting process and provide an important guide to
further analysis. In the discussion we suggest some ideas for future work.

Our analysis begins with the travelling wave ansatz:U = u(x− ct) andV = v(x− ct),
wherec ∈ R is the wave speed, andc = 0 corresponds to stationary states. Plugging this
ansatz into (1.1) yields the following system of four ordinary differential equations:

u′ = p
p′ = −cp + uv2− A(1− u)
δv′ = q
δq ′ = −c

δ
q − uv2+ Bv

(1.2)

where′ denotes the derivative with respect to the independent variableξ ≡ x−ct . Note that
the fourth component of the vector field (1.2) isO( 1

δ
) if c = O(1), therefore we introduce

γ by

c = δγ. (1.3)

Rescaling the independent variableξ ≡ δη yields:

u̇ = δp
ṗ = δ[−δγp + uv2− A(1− u)]
v̇ = q
q̇ = −γ q − uv2+ Bv

(1.4)

wherė denotes the derivative with respect to the new independent variableη.
Equation (1.4) possesses two time scales:u and p are slow variables, andv and q

are fast variables. Hence, the system (1.4) splits into reduced slow and fast subsystems
in a natural fashion. The reduced slow subsystem is defined only on the invariant plane

{u, p, v = 0, q = 0} def= M and is given byu′′ + δγ u′ + A(1 − u) = 0, which has
an equilibrium at(u = 1, u′ = 0). The reduced fast subsystem is the nonlinear planar
oscillator v̈ + γ v̇ + uv2 − Bv = 0, where the variable,u, is treated as a fixed parameter,
and where this oscillator possesses an orbit homoclinic to(v = 0, v̇ = q = 0) whenγ = 0
(equivalentlyc = 0).

This analytical splitting has a natural geometric analogue that manifests itself in the
various types of observed pulse solutions and that will be exploited throughout this work.
Indeed, based on the structure of the pulse solutions observed in our numerical simulations
and those reported in figures 1 and 2 of [22, 3], respectively, we construct solutions which
consist of alternating distinguished slow (= O(δ)) and fast (= O(1)) parts. The slow part
of the solution is guided by a particular slow trajectory on the invariant plane, or slow
manifold,M = {u, p, v = 0, q = 0}, while |v|, |q| � 1 in (1.4). By contrast, the fast part
of the solution is guided by a particular homoclinic orbit of the reduced fast system, since
u andp will change by anO(δ) amount during a fast excursion through(v, q) space.

More precisely, we employ adiabatic Melnikov theory [19, 24, 32] directly on the scaled
version of (1.4) to determine where the stable and unstable manifolds of the invariant slow
plane intersect. This theory is particularly simple whenc = 0, since (the scaled version of)
(1.4) has a nice symmetry then. The casec > 0 is much more involved, however, and it
is necessary to calculate the asymptotic expansions for the location of the intersection out
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to a fairly high order. Furthermore, for both casesc = 0 andc > 0, it is also necessary to
calculate the asymptotic expansions for the base points of the fast stable and unstable fibres
lying in the transverse intersection of the slow plane’s stable and unstable manifolds; again
to sufficiently high order whenc > 0. In this respect, we make use of the fundamental
work [7] in geometric singular perturbation theory to study how the fast and slow dynamics
‘hook up’ to each other.

By constructing fast–slow periodic and homoclinic solutions of the type just described
to a version of (1.4) in which the variables and parameters are properly scaled, we obtain
our first and second main results. In particular, the locally unique homoclinic orbits of
(1.4) that we find—which are biasymptotic to the equilibrium point(u = 1, u′ = 0) of the
slow subsystem and which are comprised of one or more fast excursions into in thev − q
space—immediately imply the existence of single-pulse and multi-pulse stationary states of
(1.1) on the infinite line. In addition, each of the periodic orbits of (1.4)—consisting of
slow segments nearM and fast excursions away fromM into the v − q space—whose
existence we prove is precisely a periodic stationary state of (1.1). Thesec = 0 periodic
orbits are locally unique and lie exponentially close to the transverse intersections found
above using adiabatic Melnikov theory, by a modified version [27] of the exchange lemma
with exponentially small error [13]. Finally, the dynamics of (1.4) also holds the key to our
proof of the non-existence of travelling waves.

The periodic patterns we observe are Turing patterns because they are found to have
an intrinsic chemical wavelength as described above. However, they are not formed by the
bifurcation mechanism Turing proposed [29], because they do not appear to emerge from
small inhomogeneities in linearly unstable homogeneous steady states. Rather, the initial
data taken for most of our simulations are localized, large-amplitude perturbations from the
homogeneous steady state(U = 1, V = 0), which is linearly stable for all positive values
of the parametersA andB. See [14] for a recent review of Turing patterns and spiral waves
in reaction-diffusion systems, and note that [31] show thatDU/DV must exceed a critical
ratio for supercritical bifurcations to occur.

The work here on the irreversible Gray–Scott model involving equations (1.1) fits
into the larger problem area of the reversible Gray–Scott model, see for instance [11],
equation (5) in [30], or equation (1) of [25]. The work reported in [30] shows that
steady spatial patterns may form, for example, from finite-amplitude perturbations of a
stable homogeneous steady state, when the diffusion coefficients of all three species are
equal. Also, in [25], it is shown, under the same assumption of equal diffusivities, that the
presence of external gradients leads to Hopf bifurcations from spatially homogeneous states
to periodic states as well as transitions to other patterns, including multi-hump branches and
fronts. In [6] and [8] patterns that develop from finite-amplitude perturbations to linearly
stable homogeneous states are studied in one- and two-dimensional FitzHugh–Nagumo
models. In one dimension, the existence of large-amplitude multi-pulse and periodic
stationary waves is shown when the diffusivity of the inhibitor is large, see [6]. Note that one
of the major differences between the FitzHugh–Nagumo and the Gray–Scott models is the
existence of an excitation threshold in the former. Finally, we remark that multi-peak and
periodic patterns have also recently been observed in models of the Belousov–Zhabotinsky
reaction, see [1, 26], respectively.

Equations of the form (1.1) withA,B = 0 are also of interest. The recent work [18]
investigates the dynamics of propagating fronts in this autocatalytic reaction. There, a new
phenomenon, dubbed biscale chaos, that occurs under the same condition imposed here
is reported and analysed, namely that the diffusivity of the ‘fuel’U is sufficiently larger
than the diffusivity of the ‘autocatalyst’V, although with qualitatively different initial data.
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Finally, we remark that other localized phenomena are reported in [4] for a system of
reaction-diffusion equations related to (1.1) but with a small parameter in front of the term
∂V /∂t .

The paper is organized as follows. In section 2, we perform the scaling analysis that
puts (1.4) into the form suitable for the analysis presented in the remainder of the paper.
The global geometry of the rescaled system is studied in section 3, where we explicitly
identify distinguished fast and slow orbit segments. In section 4, we use the results from
section 3 to construct stationary single-pulse and multi-pulse homoclinic solutions as well
as a plethora of periodic steady-state solutions. The non-existence of travelling waves is
shown in section 5. The theoretical results of sections 4 and 5 are compared to those of
numerical simulations in section 6. Finally, we discuss a variety of issues related to our
results and suggest further work in section 7.

Figure 1. Stationary one-pulse homoclinic orbits observed in numerical simulations of (1.1) at
time t = 1000: (a) A = 0.01, B ≈ 0.13, δ2 = 0.01; (b) A = 0.003,B ≈ 0.086, δ2 = 0.003.
Note that by equation (2.4) and remark 2.2,a = 1 and b = 0.6 in both (a) and (b). The
concentrationU is given by a broken curve, and the concentrationV is denoted by a full curve.

2. Scaling

A priori, it is not clear that it is necessary to introduce new scales in (1.4). However, we
shall show in this section that the patterns observed in the numerical simulations correspond
to solutions of (1.4) in which most quantities are not ofO(1), at least not for allη. In
figure 1, we present plots of two stable, stationary singular patterns which were obtained
by numerical simulation of (1.1) for different choices of the parameters(δ, A,B); we refer
to section 6 for a detailed description of the numerical analysis. In these simulations, the
concentrationsV andU are plotted as full and broken curves, respectively.V is almost
everywhere small, except for one high ‘peak,’ whileU is everywhereO(1), except in the
peak region. To be more precise, in the peak region, the maximum ofV scales as a negative
power ofδ and 0< U � 1, and outside of the peak regions,V is exponentially small inδ.
Finally, the values ofA andB are also notO(1): A = 0.01= δ2, B ≈ 0.13 in figure 1(a),
A = 0.003= δ2, B ≈ 0.086 in figure 1(b). Therefore, in this section we shall present the
relevant scalings of all quantities; their derivation is given in the appendix.

In the derivation of the appropriate scalings, we focus on the construction of solutions
homoclinic to the saddle pointS = (1, 0, 0, 0) of (1.4). See figure 2(a) for a diagram of a
one-pulse homoclinic orbit in phase space whenγ = 0. Note that these homoclinic solutions
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Figure 2. Schematic illustrations of (a) the one-pulse homoclinic orbit0h(t) ⊂ WS(S)∩WU(S)

and (b) a periodic orbit0P (t) in the four-dimensional phase space of (2.9) with, for simplicity,
γ = 0. Note that these schematic illustrations show the slow segments in(p, u) coordinates
and the fast segments in(v,−q) coordinates.

correspond exactly to the stationary patterns shown in figure 1: lim|x|→∞ u(x, t) = 1,
lim|x|→∞ v(x, t) = 0, V ≈ 0 except for a ‘fast’ jump through the phase space. However,
while the patterns shown in figure 1 are stationary, we perform the scaling analysis for the
more general case of travelling waves in this section. Also, we remark that the restriction to
homoclinic solutions is not essential in the derivation of the new scalings: the same scalings
will be used in section 4.2 where we study periodic solutions, see figure 2(b).

First, we introducea by

A = δ2a. (2.1)

This scaling ofA agrees completely with the numerical values chosen for the simulations
presented in figures 1(a) and (b): A = δ2 in both cases. Moreover,A = 0.02 while
δ2 = 0.01 in the simulations in [22]. Analytically, the rationale for scalingA in this
manner may be seen as follows. The saddle point,S, of (1.4) has two-dimensional stable
and unstable manifolds,WS(S) andWU(S). The flow induced by (1.4) restricted toM is
linear, therefore the intersectionsWS(S)∩M andWU(S)∩M are straight lines inM (see
also figure 3 in which the diagram is forγ = 0, and see section 3.1):

`U,S ≡
{
p = 1

2

(
±
√

4A+ δ2γ 2− δγ
)
(u− 1)

}
(2.2)

where`U ⊂ WU(S) corresponds with the+ sign and`S ⊂ WS(S) with the− sign. The
desired homoclinic solution0h(η) ⊂ WS(S) ∩WU(S) consists of three parts: first a slow
part close tò U , then there is a fast excursion followed by the third part close to`S , which
is again slow, see figure 2(a). The fast excursion ‘jumps’ from̀U to `S ; and hence,̀ U

and `S need to beO(δ) close to each other at the ‘take-off’ and ‘touch-down’ points of
the fast excursion. It follows from (2.2) that the jump must occurO(δ) nearS (and thus
1− u = O(δ)). However, the numerically observed patterns show thatu is not close to 1
during the excursion. By (2.2), we observe that anO(δ) jump from `U to `S through the
fast field for 1− u 6= O(δ) is only possible ifA = O(δ2): then`U and`S areO(δ) close
for all u of O(1). Hence, we arrive at (2.1).
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Next, figures 1(a) and (b) indicate thatu 6= O(1) during the excursion through the fast
field (see also section 6). Also, it is clear from the fast subsystem of (1.4) thatγ cannot be
O(1): a solution which leaves the slow manifoldM will follow the unstable manifold of
the point(0, 0) of this subsystemO(δ) close. This orbit cannot returnO(δ) close toM,
due to the strong ‘friction’ term−γ q. Thus, we scale:

u = δαû and γ = δβγ̂ (2.3)

whereα > 0 andβ > 0 are, so far, free parameters. This scaling assumes thatû cannot be
smaller thanO(1) during the excursion through the fast field:δαû is the leading order part
of u during a ‘jump’. Similarly, eitherγ̂ = 0, which corresponds to stationary waves, orγ̂

is O(1), and not smaller. These properties ofû and γ̂ will be essential in the proof of the
non-existence result of section 5.

Based on the above ‘ansatz’ (2.3), one has to rescaleη, p, v, q and B in order to
obtain a system which might govern solutions of the singular type sketched in figure 2
(and numerically found in figure 1). The main idea behind the derivation of the significant
scaling is (again) the application of a ‘jump’ condition: a solution that leaves the slow
manifoldM in the neighbourhood of̀U must return close tòS . This approach yields:

η = δ− 1
3αη̂ u = δαû p = δ 2

3αp̂ v = v̂

δ
1
3α

q = q̂ A = δ2a B = δ 2
3αb c = δ1+β γ̂ .

(2.4)

We present the detailed derivation of this scaling analysis in the appendix.
Introducing these scalings into (1.4), and dropping hats, we arrive at:

u̇ = δ(1− 2
3α)p

ṗ = δ(1− 2
3α)[uv2− δ(1+β+ 1

3α)γp − δ(2− 1
3α)a + δ(2+ 2

3α)au]

v̇ = q
q̇ = −uv2+ bv − δ(β− 1

3α)γ q

(2.5)

with two additional conditions for the free parametersα andβ (see the appendix):

1− 2
3α > 0 or 06 α < 3

2 (2.6)

β − 1
3α > 2(1− 2

3α) or β > 2− α > 1
2. (2.7)

In the next sections, we will expand the solutions of (2.5) with respect to the leading-
order perturbation termδ(1−

2
3α), and we will study the relative magnitudes of the ‘friction’

term in the fast field and the amplitude of the slow components of the vector field. Therefore,
we introduce for simplicity of notation,ε andσ by

ε = δ1− 2
3α and ε2+σ = δβ− 1

3α. (2.8)

Furthermore, we defineρ = 1
1− 2

3α
, so thatδ = ερ . Plugging in this final notation, the main

equations to be analysed in this paper are:
u̇ = εp
ṗ = ε[uv2− ε 1

2 (3ρ+1)a − ε(2ρ+1+σ)γp + ε(3ρ−1)au]

v̇ = q
q̇ = −uv2+ bv − ε(2+σ)γ q.

(2.9)

Here, 0< ε � 1, σ > 0 andρ > 1. Note that the critical pointS = (1, 0, 0, 0) of (1.4)
has been rescaled into(1/δα, 0, 0, 0) in (2.5) and(1/ε

3
2 (ρ−1), 0, 0, 0) in (2.9), where we
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remark that3
2(ρ − 1) = αρ. Also, for completeness, we note thatσ is given explicitly by

σ = (β + α − 2)/(1− 2
3α).

Remark 2.1. Based on the numerical simulations shown in figure 1, those in section 6,
and those of [22], one would say thatα is approximately 1 in (2.5). In the simulations
shown in figure 1, we tookα = 1 and b = 0.6; henceB ≈ 0.13 in figure 1(a) and
B ≈ 0.086 in figure 1(b). Also, the choiceB = 0.079 with δ2 = 0.01 in the numerical
simulations of [22] is related to the realistic value ofb of approximately 0.37, since, by
(2.4),B = 0.079= bδ2/3 ≈ 0.366(0.01)1/3. However, in section 4 we shall see that there
exist stationary pulses (thusc = γ = 0) for anyα ∈ [0, 3

2). Nevertheless, the numerical
simulations suggest that only those withα ≈ 1 can be stable (for certain values ofa andb,
see section 6). If we look for non-stationary (travelling) pulses, then the value ofβ becomes
important, as we shall see in section 5. In the simulations illustrated in figures 7–9, we show
numerically that the splitting pulses travel with speedc = O(δ2), thus, by (2.4),β = 1 in
(2.5).

Remark 2.2. There are three free parameters in the original, unscaled system (1.4):A,B, γ .
As a consequence of the scalings, there are five -a, b, γ, σ, ρ - in (2.9) (or equivalently,
a, b, γ, α, β in (2.5)). The main difference is that we introduced, by the scalings in this
section, explicit new parameters that fixed the magnitudes of the parameters in (1.4) as
order functions inδ by the scalings. All five parameters in (2.5) and (2.9) areO(1), which
is clearly not the case in (1.4).

Remark 2.3. The above scaling respects the fundamental chemistry of the Gray–Scott
model. Recall thatB = A + k2, wherek2 > 0. By our scaling, we see thatB is always
greater thanA, since, by (2.4),B = δ2α/3b � A = δ2a with α ∈ [0, 3

2) (see equation (2.9),
for all a andb of O(1) and 0< δ � 1).

Remark 2.4. In this section, the parameterα ∈ [0, 3
2) has been introduced by the

observation that the solutionU of (1.1) is notO(1) during a pulse excursion ofV , but
O(δα). On the other hand, one could also introduceα as the parameter that measures the
magnitude ofB with respect toδ: B = δ2α/3b. From this point of view one can say that
the magnitude ofB determines the magnitude ofU (andV ) during a pulse-excursion (see
also sections 6 and 7).

3. Global geometry for ε = 0 and for 0< ε� 1

The fast subsystem of (2.9) is given by

v̇ = q
q̇ = −uv2+ bv − ε(2+σ)γ q (3.1)

in which u is constant. Whenε = 0, (3.1) is a one-parameter (u) family of planar
Hamiltonian systems, with Hamiltonian

K(v, q; u) = q2

2
− b

2
v2+ 1

3
uv3 (3.2)

Moreover, whenε = 0, the equation (3.1) possesses a centre equilibrium at(v = b
u
, q = 0)

and a saddle equilibrium at(v = 0, q = 0) connected to itself by a homoclinic orbit (see
figure 3(a))

v0(t; u0) = 3b/(2u0) sech2[(
√
b/2)t ] and q0(t; u0) = v̇0. (3.3)
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Figure 3. Schematic illustrations whenγ = 0 of (a) the(v, q) phase space of the fast subsystem,
and (b) the slow vector field onM for γ = 0 showing the location of the curvesTo, Td, `U ,
`S , and a hyperbolic orbit segment0C . Note that theu coordinates of the saddle,S, and the
upper two intersections,To ∩ `U andTd ∩ `S , are onlyO(1) if α = 0.

The homoclinic orbit, which may be thought of as a right-swimming fish, surrounds
the centre equilibrium and is symmetric about thev−axis, with a maximum point at
(vmax = 3b

2u , q = 0). We shall frequently use the fact thatv0 is an even function of
t .

The complete phase portrait of (2.9) whenε = 0 follows immediately by putting
together the above geometrical information from the fast subsystem together with the simple
observation that both variablesu andp are constant in time whenε = 0 in (2.9). First,
the planeM ≡ {(u, p, v = 0, q = 0)} is a normally hyperbolic manifold, trivially invariant
since it is a plane of equilibria. Second, if we letU denote a large open set onM that
contains the saddle equilibriumS but not points from the set{u = 0}, then the manifold
M|U has three-dimensional local stable and unstable manifolds. These three-dimensional
manifolds are the unions of the one-dimensional local stable and unstable manifolds of the
saddle equilibria of (3.1), and they areCr smooth for everyr > 0. Finally, each point
(u, p, v = 0, q = 0) onM is connected to itself by a homoclinic orbit. Therefore, the
manifoldM|U is connected to itself by a three-dimensional homoclinic manifoldW(M).

3.1. Dynamics onM

The detailed geometric information about theε = 0 limit of (2.9) discussed above helps to
determine the geometry of the full system (2.9). Whenε > 0, the planeM is still invariant
under the flow of the full system (2.9). The flow onM is slow, and most orbits onM
leak out ofU on the boundary in both forward and backward time.

Whenε > 0, the slow subsystem

u′ = p
p′ = −ε 1

2 (3ρ+1)a − ε(2ρ+1+σ)γp + ε(3ρ−1)au
(3.4)

is linear and has precisely one saddle equilibrium at the restrictionS(u = 1/ε
3
2 (ρ−1), p = 0)
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of S toM. The linearization of (3.4) has eigenvalues given by

λ± ≡ 1
2ε

1
2 (3ρ−1)

[
±
√

4a + ε(ρ+3+2σ)γ 2− ε 1
2 (ρ+3+2σ)γ

]
. (3.5)

Therefore, the stable and unstable manifolds ofS restricted toM are known explicitly as
graphs:

WU,S(S)|M def= `U,S : p = λ±
(
u− 1

ε
3
2 (ρ−1)

)
(3.6)

where`U and`S are rescaled versions of (2.2) (see figure 3(b)). Asymptotically, we have:

`U,S : p = ∓ε√a + h.o.t. (3.7)

for α > 0 (equivalentlyρ > 1), u = O(1), independent ofγ by (3.5). By contrast, when
α = 0 (i.e.ρ = 1), `U,S cannot be approximated by a vertical line ‘+ h.o.t.’, and one must
use (3.6).

3.2. Persistent fast connections

When 0< ε � 1, the stable and unstable manifolds ofM|U in the ε = 0 system persist
as three-dimensional,Cr smooth stable and unstable manifolds,WU(M) and WS(M).
This persistence result for the local manifolds follows from a straightforward application
of the Fenichel theory of [7] to (2.9) (see also theorem 3 of [12]). The branches of these
manifolds that coincided whenε = 0 no longer do so, and in general will intersect each
other in two-dimensional surfaces, and in these intersections lie the only orbits biasymptotic
toM.

We will employ a Melnikov method to detect these intersections. In particular, system
(2.9) is of the type to which Robinson’s extension of the Melnikov method applies, see
[19, 24, 32]. Let t ≡ η, so that the independent variable of (2.9) is now denoted by
t . Let (u(t), p(t), v(t), q(t)) represent a solution of (2.9) that passes through the point
(u0, p0, v(0), 0) at time t = 0. Note that we have suppressed theε dependence in this
notation.

The splitting distance between the manifoldsWU(M) andWS(M) can be measured in
the hyperplane{q = 0}, which is the hyperplane transverse toW(M) and is spanned by
the three vectors(1, 0, 0, 0), (0, 1, 0, 0), and the unit normal

n̂ ≡
(0, 0, ∂K

∂v
(3b/2u, 0; u), ∂K

∂q
(3b/2u, 0; u))

‖(0, 0, ∂K
∂v
(3b/2u, 0; u), ∂K

∂q
(3b/2u, 0; u))‖ = (0, 0, 1, 0). (3.8)

The distance measurement is given by

1K(u0, p0; a, b, γ ) ≡
∫ ∞
−∞

K̇(v(t), q(t); u(t), p(t))dt (3.9)

asε→ 0+, where a straightforward computation yields

K̇ = −ε(2+σ)γ q2+ 1
3εpv

3. (3.10)

Since we look for solutions on these perturbed stable and unstable manifoldsWS(M)

andWU(M), we need to expand the solutions(u(t), p(t), v(t), q(t)) of (2.9) in powers of
the small parameterε. The structure of this expansion will depend on the values ofσ and
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ρ. However, we note that the expansion remains standard at least up to terms smaller than
O(ε2):

u(t) = u0+ εu1(t)+ ε2u2(t)+ h.o.t.

p(t) = p0+ εp1(t)+ ε2p2(t)+ h.o.t.

v(t) = v0(t; u0)+ εv1(t)+ ε2v2(t)+ h.o.t.

q(t) = q0(t; u0)+ εq1(t)+ ε2q2(t)+ h.o.t.

(3.11)

as ε → 0, wherev0(t; u0) and q0(t; u0) are the unperturbed homoclinic solutions given
in (3.3). Note that it depends onσ whether the next term in the expansion ofv(t) is of
O(ε(2+σ)) or O(ε3). This distinction will become important in section 5. Solutions on
the local unstable manifold ofM are represented by expansions valid on the semi-infinite
time interval(−∞, 0], and solutions on the local stable manifold ofM are represented by
expansions valid on the semi-infinite time interval [0,−∞). The higher-order terms will
be determined perturbatively.

We choose the initial conditions on the curveWS(M) ∩ WU(M) ∩ {q = 0}, whose
existence we establish below. We assume thatu(0) = u0 and uj (0) = 0 for j > 1: the
initial conditionsp0, pj (0) and vj (0) (j > 1) are then determined as a function ofu0 by
the condition that0(t) = (u(t), p(t), v(t), q(t)) ∈ WS(M) ∩WU(M).

Remark 3.1. In this type of Melnikov calculation, it is usually sufficient to use only the
unperturbed solution(u0, p0, v0(t; u0), q0(t; u0)). However, here we need higher-order
corrections since the magnitude of the perturbation in the fast field,O(ε(2+σ)), is smaller
than the evolution of the slow field,O(ε).

By substituting (3.11) into (2.9), we find for the first-order corrections ofu andp:

u1(t) ≡ 0

p1(t) =
∫ t

0
u0v

2
0(τ ) dτ + p1(0).

(3.12)

Note that the integral term inp1(t) is an odd function of the time variablet . Determining
v1(t) and all other higher-order terms depends on the type of solutions one is looking for
and requires further analysis. Plugging these expansions into (3.10) and (3.9) yields:

1K = ε
∫ ∞
−∞

[ 1
3p0v

3
0(t)+ ε( 1

3p1(t)v
3
0(t)+ p0v

2
0(t)v1(t)− εσ γ q2

0(t))+ h.o.t.] dt (3.13)

where1K is a function ofu0, p0; and the parametersa, b, andγ .
We consider solutions that are biasymptotic toM; thus,1K must have zeroes, and

there must be a balance between some of the terms in the integrand. Moreover, these
solutions must be homoclinic toS; and, hence, they take off (respectively, touch down)
from (on)M near`U (`S). Thus, by (3.7) and the fact that the perturbations can at most
have anO(ε) influence onp(t) during half a circuit through the fast field, we have to set
p0 = 0 andp1(0) = p̂0; i.e. p̂0 determines the initial condition ofp(t) at theO(ε) level.
Moreover, we observe that1K = O(ε2), and hence|v(0) − v0(0)| = O(ε2). Thus, the
first-order correctionv1 of v is a solution of a homogeneous second-order linear equation
with initial conditionsv1(0) = v̇1(0)(= q1(0)) = 0, namely: v1(t) ≡ 0. Now, we recall
from (3.12) that the integral term inp1(t) is odd and also thatv0(t) is even, so that all
parts of the second term in the integrand of (3.13), except the functionp1(0)v3

0(t), are odd.
Hence, (3.13) reduces to:

1K(u0, p0; a, b, γ ) = ε2
∫ ∞
−∞
( 1

3p̂0v
3
0(t)− εσ γ q2

0(t)) dt + h.o.t.
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Using (3.3), a straightforward integration yields:

1K(u0, p0; a, b, γ ) = ε2

(
6b2
√
b

5u2
0

)(
2p̂0

u0
− εσ γ

)
+ h.o.t. (3.14)

Therefore, to leading order,1K has simple zeroes along the line

p = 1
2ε
(1+σ)γ u. (3.15)

This result should be interpreted as follows: the orbits0(t; x0) through the points
x0 = (u, p, v0(0; u), 0) are biasymptotic toM if u and p are related to leading order
as in (3.15). Note that it has now become clear thatσ cannot become negative, or, in the
terminology of (2.5), thatβ − 1

3α cannot be smaller than 2(1− 2
3α) (the scalings in (2.3)

imply that bothu (= û) andγ (= γ̂ ) are exactlyO(1) with respect toε, while p cannot
be larger thanO(ε) by (3.7)).

In order to quantify the influence of the fast field on theu- and p-coordinates of a
solution inWU(M) ∩WS(M) during its excursion through the fast field, we define

1p(u0, p0; a, b, γ ) ≡
∫ ∞
−∞

ṗ dt (3.16)

1u(u0, p0; a, b, γ ) ≡
∫ ∞
−∞

u̇ dt. (3.17)

Straightforward computations give (by (2.9) whereρ > 1):

1p = ε
∫ ∞
−∞
(u(t)v2(t)+O(ε2))) dt

= ε
∫ ∞
−∞

[u0v
2
0(t)+ ε(u1(t)v

2
0(t)+ 2u0v0(t)v1(t))+O(ε2)] dt

= ε6b
√
b

u0
+O(ε3) (3.18)

where we have again usedu1(t) = 0 andv1(t) = 0. Finally, we use the fact that we will
only study1u(u0, p0) for values of(u0, p0) in the neighbourhood of the1K = 0 line
(3.15). Thus,p0 = O(ε) which yields by (2.9) that the change inu is of higher order:

1u = O(ε2). (3.19)

There are two other curves onM that play a crucial role in the analysis of the next
sections and that are obtained as follows. The first intersection ofWS(M) andWU(M)

in the hyperplane{q = 0} is given by (3.15) to leading order. This intersection is a one-
dimensional curve in the two-dimensional manifoldWS(M)∩WU(M). Through any point
x0 on this curveWS(M) ∩WU(M) ∩ {q = 0} there is an orbit0(t; x0) which approaches
M for ‘large’ t . More precisely, the Fenichel theory [7] already cited above implies that for
any0(t; x0) there are two orbits0+M = 0+M(t; x+0 ) ⊂M and0−M(t; x−0 ) ⊂M, respectively
(where0+(0, x+0 ) = x+0 ∈M), such that‖0(t; x0)−0+M(t; x+0 )‖ is exponentially small for
t > 0 wheret > O( 1

ε
) and‖0(t; x0) − 0−M(t; x−0 )‖ is exponentially small fort < 0 with

−t > O( 1
ε
). As a consequence,

d(0(t; x0),M) = O(e− k
ε ) for |t | > O

(
1

ε

)
or larger

for somek > 0, and0±M(t; x±0 ) determine the behaviour of0(t; x0) nearM. Therefore,
we define the curvesTo ⊂M (take off) andTd ⊂M (touch down) as

To = ∪x0{x−0 = 0−M(0; x−0 )} and Td = ∪x0{x+0 = 0+M(0; x+0 )} (3.20)
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where the unions are over allx0 in WS(M) ∩WU(M) ∩ {q = 0}. To (respectivelyTd), is
the collection of base points of all of the fibres inWU(M) (respectivelyWS(M)) that lie
in the transverse intersection ofWU(M) andWS(M). See figure 3(b) for a diagram when
γ = 0.

The locations ofTo and Td can be obtained explicitly by determining the relations
betweenx0 = (u0, p0, v0, 0) and x±0 = (u±0 , p

±
0 , 0, 0). The accumulated change inp of

0(t) during the (half-circuit) excursion through the fast field is measured by∫ 0

−∞
ṗ dt and

∫ ∞
0
ṗ dt

when t < 0 andt > 0, respectively. The changes inp of 0±(t) during the same period of
time can be neglected, in highest orders, sinceṗ = O(ε3) onM by (2.9). By (2.9) and
(3.19), we also conclude thatu0 = u±0 to leading order. Sincex0 is given by (3.15), we
find (by a calculation similar to (3.18)) to leading order:

To : p = 1

2
ε

(
εσ γ u− 6b

√
b

u

)

Td : p = 1

2
ε

(
εσ γ u+ 6b

√
b

u

)
.

(3.21)

Having identified in this section the geometric features of (2.9) both in the invariant
planeM and in the directions transverse to it, we are now ready to construct the stationary
waves of (1.1). However, we will see in section 5 that a more subtle analysis is necessary
in order to study the (non-)existence of travelling waves.

4. Stationary solutions

In this section, we focus on the stationary (c = 0) solutions of (1.1). These are given by
solutions of (2.9) withγ = 0. In particular, forα ∈ (0, 3

2), we construct single-pulse and
multi-pulse orbits homoclinic toS in section 4.1, as well as a variety of multi-pulse periodic
solutions, including the steady states reported in the simulations of [22], in section 4.2. The
special case ofα = 0 is treated in section 4.3. Finally, we refer the reader to section 6
for the results of numerical simulations in which many of these homoclinic and periodic
stationary waves are observed as stable patterns.

4.1. Single-pulse and multi-pulse homoclinic orbits

Whenγ = 0, the equations (2.9) possess the symmetry:

t →−t p→−p and q →−q. (4.1)

One-pulse homoclinic orbits of the type described in section 2 are constructed as follows
(see figure 2(a)). Let 0−(t) = (u−(t), p−(t), v−(t), q−(t)) denote an orbit of (2.9) on
WU(S) with v−(t) > 0. Its existence guarantees the existence of a symmetric solution on
WS(S) which we denote:

0+(t) = (u+(t), p+(t), v+(t), q+(t)) = (u−(−t),−p−(−t), v−(−t),−q−(−t)).
For large negativet , 0− lies close toM and moves along̀U as t increases.0− leaves
the neighbourhood ofM in an O(ε) ball about a take-off point(u−0 , p

−
0 ) on `U ∩ To,

whereu0 is O(1) and will be determined below. Then,0− makes an excursion through the
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fast vector field and transversely intersects the{q = 0} hyperplane for the first time in a
point which we shall denote(u1, p1, v1). By the symmetry (4.1),0+ executes a symmetric
trajectory in backward time: it departs̀S in an O(ε) ball about the touch down point
(u+0 , p

+
0 ) = (u−0 ,−p−0 ) ∈M and transversely intersects the{q = 0} hyperplane for the first

time in the point(u1,−p1, v1). One-pulse solutions therefore exist whenp1 = 0, so that
the two intersection points coincide. In that case,0−(t) = 0+(t) ∈ WU(S) ∩WS(S) is the
one-pulse homoclinic orbit.

We proceed to computep1. From section 3, we know thatp1 = p−0 + 1
21p where

1p is the increment inp during half an excursion in the fast field and is given by (3.18):
1p = ε 6b

√
b

u−0
+ h.o.t.. Note that1p has been computed in section 3 for orbits0(t) with

0(0) ∈ {q = 0, v > 0} and that we replacedu0, the u-coordinate of0(0) in (3.18), by
u−0 . However, we observe by (3.19) thatu−0 = u+0 = u0 +O(ε2). We infer from (3.7) that
p−0 = −ε

√
a+h.o.t. for (u−0 , p

−
0 ) ∈ `U . Hence,p1 is a function ofu−0 ; and, settingp1 = 0

to leading order yields:

u−0 = 3b

√
b

a
. (4.2)

Thus, we have proved the following theorem for the caseN = 1.

Theorem 4.1.There exists anε0(α) > 0 such that for every0 < ε < ε0(α), for α ∈ (0, 3
2),

for everya and b > 0, and for every positive integerN , the system (2.9) withγ = 0
possesses a uniqueN -pulse orbit homoclinic toS. Moreover, for eachN , the homoclinic
orbit consists of two slow segments interspersed withN successive excursions in the fast
field during whichu is near3Nb

√
b/a. Finally, for eachN , the homoclinic orbit lies in the

transverse intersection ofWU(S) andWS(S).

Remark 4.1. Note that the above calculation with (3.7) is only possible forα > 0 or,
equivalentlyρ > 1. In fact,ε0(α)→ 0 asα→ 0. The caseα = 0 is special. In this case,
(2.9) reduces to the unscaled (1.4) withA = δ2a (use (2.4)). Moreover, one has to use (3.6)
instead of (3.7). In section 4.3, we will establish (theorem 4.3) that whenα = 0 there can
be either two or zero homoclinic orbits (with a saddle node bifurcation of homoclinic orbits
in between), depending on the values ofa andb. See also the discussion after theorem 4.3
as well as that in remark 2.2.

Proof of theorem 4.1. Note that the last statement of the theorem follows directly from
the dependence of1p on u−0 . Since1p depends inversely onu−0 , (4.2) is a simple zero of
p1. Hence, the symmetry (4.1) implies thatWU(S) andWS(S) intersect transversely in this
homoclinic orbit. We remark that these same results forγ = 0 can be obtained (section 5)
by considering the general caseγ > 0, and examining the intersection ofTo and `U as
given by (3.21) and (3.7), respectively.

We proceed to prove the theorem forN > 2, again relying heavily on the symmetry
(4.1). See figure 4 for an illustration of anN -pulse orbit withN = 2. First, we construct the
two-pulse orbit. Consider a solution0−(t) onWU(S) that intersects the hyperplane{q = 0}
a second time at the point(u2, p2, v2). Such a solution exists as long asε is sufficiently
small and the take-off point(u−0 , p

−
0 ) can be chosen such that1K < 0, so that0−(t) is

neither in the local stable manifold ofM nor winds up on the other side ofWS(M) (that
is: v−(t) does not become negative immediately after the (first) return of0− to anO(

√
ε)

neighbourhood ofM). We show at the end of this construction that this choice is possible.
Due to the symmetry (4.1),0+(t) also has a second transverse intersection with the

hyperplane{q = 0} at the point(u2,−p2, v2). The semi-orbits0−(t) and0+(t) hook up if
p2 = 0. Hence, it remains to calculatep2 = p−0 +1p, where1p is a change inp during
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Figure 4. Schematic illustration of theN = 2 pulse homoclinic orbit of
(2.9).

one complete circuit in the fast field (3.18). Recalling (2.9) and the fact thatp 6 O(ε) over
the time interval of interest, or equivalently, by using (3.19), we see thatu remains constant
to sufficiently high order during both of the near-separatrix excursions that this two-pulse
orbit makes. Hence, this two-pulse orbit departs fromM in anO(ε) ball centred at the
point (u−0 , p

−
0 ) with

u−0 = 6b

√
b

a
(4.3)

exactly as stated in the theorem. The fact that this two-pulse homoclinic orbit lies in the
transverse intersection ofWU(S) andWS(S) follows directly from the symmetry (4.1) and
the fact thatp2 has a simple zero atu−0 = 6b

√
b/a. For the sake of completion, we observe

that v2 = O(√ε) since1K = O(ε).
Inductively, one uses the same procedure to constructN -pulse homoclinic orbits for any

finite N > 2. Of course, one must ascertain, as we do below, that1K < 0 after0−(t) has
made its(N − 1)th near-separatrix excursion, so that this orbit always stays on the correct
side ofWS(M). We find that theseN−pulse orbits leaveM near(u−0 , p

−
0 ), where:

u−0 = 3Nb

√
b

a
(4.4)

and thatpN has a simple zero atu−0 .
Finally, we establish that the orbits0− which return to the hyperplane{q = 0} finitely

many times, whose existence we assumed in the above constructions forN > 2, do indeed
exist. Recalling (3.14), we see that1K < 0 for orbits withp0 < 0 andγ = 0, wherep0

is thep-coordinate of the intersection of0(t) with the hyperplane{q = 0, v > 0}. Hence,
each time0−(t) departs from a neighbourhood ofM to the left of the take-off curve,To,
it always intersects the hyperplane{q = 0} another time withv = O(1) (see figure 3(b)).
For values ofu−0 greater thanu−0 = 3b

√
b/a ∈ `U ∩ To corresponding to the one-pulse

homoclinic, we know that̀ U is to the left ofTo, thus0−(t) will at least intersect{q = 0}
three times: twice forv = O(1), once in between for 0< v � 1. A straightforward
calculation shows that a second intersection of0−(t) with {q = 0} O(√ε) nearM is only
possible foru−0 > 9b

√
b/a + O(ε). Thus, the three-pulse homoclinic orbit constructed

above plays the role of separatrix solution. Inductively, one can show along the same lines
that each of theN = (2n − 1)-pulse solutions is a separatrix solution and that it is only
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possible for0−(t) to have annth intersection with the hyperplane{q = 0} O(√ε) nearM
if u−0 > 3(2n− 1)b

√
b/a +O(ε). This completes the proof of theorem 4.1. �

Remark 4.2. The result of theorem 4.1 can be generalized to obtain homoclinic orbits with
N pulses whereN = o(1/ε). To show this, we consider anN of O(ε−s), for a certain
s > 0. Errors in1u and1p have becomeO(ε2−s) afterO(ε−s) circuits through the fast
field. This expression has to remain smaller than the leading order term ofO(ε). However,
during each excursion in the fast field, the increment inp is O(ε), so we conclude that the
above analysis is valid forN = O(ε−s) with s < 1.

4.2. Periodic steady states

In this section, we construct a variety of periodic steady states (c = 0), including those
observed in the numerical simulations, see figure 1 of [22], and section 6 of this work. The
simulations of [22] were performed on an interval with periodic boundary conditions. An
initially solitary pulse replicated until it filled the interval with eight identical, stationary,
pulses. In section 6, we will show that such a periodic pattern also occurs on unbounded
domains, at the core of the self-replicating pulse pattern. TheM−pulse periodic orbits
observed in the simulations consist ofM copies of the same fundamental periodic orbit in
the (u, p, v, q) phase space. This fundamental orbit consists of one fast excursion from the
slow manifoldM and one (long) segment during which the orbit is nearM. Thus,v andq
are exponentially small during the largest part of the period, which yields that the solution
V of the PDE (1.1) must have the same behaviour (see section 6). We prove the existence
of various families of such fundamental periodic orbits. Moreover, we are able to calculate
the period and other key features of these orbits, so that we can explicitly determine the
fundamental orbit corresponding to a numerically observed stationary periodic pattern.

In order to carry out the construction, we focus on the special case ofα = 1 in (2.9),
which corresponds to the numerically observed steady states. The same analysis can be
done, however, for allα ∈ (0, 3

2), and in the proof below we show how to extend theα = 1
results to all theseα. For α = 1, the slow vector field onM is

u̇ = εp
ṗ = ε9au− ε6a

(4.5)

which is simply (2.9) withγ = 0, ρ = 3 and(v, q) = (0, 0). This slow system is linear
with a saddle fixed point atS = (1/ε3, 0), and all orbits0C are branches of hyperbolas
given by (

1

ε3
− u

)2

− p2

ε8a
= C (4.6)

parametrized byC (see figure 3(b)). Here, we are interested in the orbits0C in the sector
below S with C > 0, that is, the area enclosed by`U and `S , as defined in section 3.1.
These orbits are symmetric about theu−axis, and for each such orbit segment, there exists
a maximum valueumax of u such that(u, p) = (umax, 0) is the symmetry point. Instead of
C, umax can also be used to parametrize the orbits0C (4.6):

p2 = ε2a[(1− ε3u)2− (1− ε3umax)
2] with C =

(
1

ε3
− umax

)2

. (4.7)

Note that the lines̀U,S correspond toC = 0 or umax= 1/ε3, theu-coordinate of the saddle
S; also,C > 0 corresponds toumax< 1/ε3.
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The orbits0C can intersect the take-off and touch-down curvesTo andTd ⊂M (see
figure 3(b)). Below, we will show that there exist periodic solutions to (2.9) which ‘start’
at t = 0 exponentially close to(umax, 0, 0, 0) ∈ M and follow 0C downwards to an
intersection0C ∩ To, then take off for a circuit through the fast field after which they again
touch down onM near0C ∩ Td and follow 0C upwards to ‘end’ on its initial point near
(umax, 0, 0, 0). However, first we need to pay some attention to the intersections0C ∩ To,
or symmetrically,0C ∩ Td. A priori, one would guess thatTo might intersect0C more than
once. Using expressions (3.21) and (4.7) it is easy to determine values forumax such that
To intersects0C twice, but, theu-coordinates of these intersections can never both beO(1)
(unlessα = 0, see section 4.3). This is a crucial point: if theu-coordinate of a take off
point is notO(1), then the analysis of section 3 is not valid, since all coefficients of the
ε-expansions in that section are (implicitly) assumed to beO(1). Moreover, system (2.9)
is determined such that the excursions through the fast field take place foru = O(1), by
construction. Thus, the expression (3.21) is only valid whenu isO(1); and, the intersections
0C ∩ To with u > O(1) must be treated asO(1) intersections for a different scaling ofu,
or better,û. In other words: theu > O(1) intersections of (3.21) and (4.7) are described
by (2.9) withα < 1, since we choseα = 1 above.

It is clear from the combination of (3.21) and (2.9) that an intersection withu = O(1)
is only possible forumax= O(1/ε3). Thus, we introduce the newO(1) parameterUmax by

umax= Umax

ε3
Umax6 1. (4.8)

It follows from (4.7) and (3.21) that0C ∩ To (with γ = 0) is given to leading order by

(uP , pP ) = (uP (Umax), pP (Umax)) =
(

3b
√
b√

a(2Umax− U2
max)

,−ε
√
a(2Umax− U2

max)

)
(4.9)

which we simply denote(uP , pP ). Note that (4.9) coincides with (4.2) and (3.7) asUmax ↑ 1,
this is necessary since0C merges with`U ∪ `S in this limit (see figure 2(b)). We can
formulate the main result of this subsection.

Theorem 4.2.For everyε sufficiently small,α ∈ (0, 3
2) and for anyUmax < 1 of O(1), the

system (2.9) withγ = 0 possesses a periodic orbit which consists of two distinguished parts:
a slow part near0C ∈M for u > uP (4.9) and an excursion through the fast field near the
{u = uP } hyperplane.

Remark 4.3. So far, we only considered the caseα = 1. All of the above is also valid for
anyα ∈ (0, 3

2) (with uP exactly as in (4.9)). In section 4.3, we will discuss the special case
α = 0.

Proof of theorem 4.2. We fix an arbitrary value ofUmax < 1, which automatically
determines a value ofC, see (4.7). We recall from section 3 that, for every orbit0h(t, x0)

of (2.9) that is homoclinic toM and that passes through the pointx0 in the first intersection
of WS(M) andWU(M) in the hyperplane{q = 0}, there exist orbits onM, denoted by
0±M(t; x±0 ), such that‖0h(t; x0) − 0±M(t; x±0 )‖ = O(e−k/ε) for |t | = O(1/ε). Among this
family of homoclinic orbits, there exists a unique one, which we denote0h,C(t; x0), whose
associated take-off and touch-down pointsx−0 ≡ 0−C,M(0; x−0 ) and x+0 ≡ 0+C,M(0; x+0 ) lie
precisely on0C ∩ To and0C ∩ Td, respectively, wherex±0 = (uP ,∓pP , 0, 0) (4.9), due to
the symmetry (4.1). Also,x−0 is the forward image ofx+0 under the flow of (4.5), since
both points lie on0C . In other words, the orbits0C , 0−C,M, and0+C,M are ‘time’ translates
of each other. For completeness, we note that the complete orbit,0h,C , homoclinic toM
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(not S) passes through an exponential neighbourhood of0C ∩ {u > uP } twice and itsu and
p coordinates are unbounded fort →±∞.

We now show that there exists a periodic orbit0P (t) of the type described in the
theorem, whose slow segments are exponentially close to0h,C ∩ {u > uP }. Consider the
line segment̀ of points(umax, 0, v,0) such that thev coordinate satisfiesK1exp[−(k/ε5)] 6
v 6 K2exp[−(k/ε5)] for sufficiently smallK1, sufficiently largeK2, and for somek > 0,
and all three constants areO(1). Note that the time of flight fromu = umax to u = O(1)
along0C isO(ε−5). Flowing the initial conditions oǹ forward generates a two-dimensional
manifoldL. Furthermore, with the constantsk,K1, andK2 chosen appropriately, some of
the orbits onL exit anO(ε) neighbourhood ofM near0C with u > uP and some exit
with u < uP . Finally, at these exit points,L is C1-O(exp[−(c/ε5)]) close to the invariant
foliation on WU(M) with base points restricted to0C . This closeness estimate follows
from the modified version (see [27]) of the exchange lemma with an exponentially small
error of [13]. The first application of the theory of the exchange lemma to find periodic
orbits in singularly perturbed systems is given in [27]. Of course, by the symmetry (4.1),
these same arguments show thatL also liesC1-O(exp[−(c/ε5)]) close toWS(M|0C ) at
points at which orbits onL exit anO(ε) neighbourhood ofTd ∩ `S ∈ M in backward
time. Therefore, sinceWU(M) andWS(M) intersect transversely, so mustL intersect
itself transversely, exponentially close to the above constructed orbit,0h,C . Moreover, due
to the transversality of the intersectionsTo ∩ 0C andTd ∩ 0C , this intersection ofL with
itself is locally unique, and therefore so is the periodic orbit0P that lies inside it.

To conclude the proof of the theorem, we briefly consider the caseα 6= 1 (α > 0). The
idea of the proof in this case is in essence the same, one only has to adapt the length of the
line segment̀ since the ‘time of flight’ fromumax (= O(1/ε3/2(ρ−1))) to u = O(1) depends
on α (or ρ). �

Finally, we exploit the fact that the flow onM is linear to explicitly calculate the
leading order length of the period of a periodic orbit0P (t). Since we want to apply the
outcome to numerically observable patterns, we use the totally unscaled system (1.1) with
c = 0, where′ denotes differentiation with respect to the spatial variablex appearing in
the original PDE (1.1). The only exception is that we setA = δ2a, as we showed was
necessary in section 2.

First, we note that the leading order of the period of0P is determined by the time
0P spends nearM, specifically exponentially close to a hyperbolic orbit0C (4.7) onM.
Second, we observe that the exact position of the take-off and touch-down points(uP ,∓pP )
has no leading order influence on the period of0P . Hence, the period is determined by
the time it takes0C to travel fromu = 0, p > 0 to u = 0, p < 0 via the symmetry point
(Umax, 0). Here, we have to be aware that we do not get confused by the notation: the
(u, p, v, q) = (û, p̂, v̂, q̂) in (2.9) are rescaled versions of the ‘original’(u, p, v, q) in (1.2).
By (2.4) we see that̂u = δαu. Thus, the jump of0P occursO(δα) close to{u = 0}, and
neglecting thisO(δα) error has no leading order influence as long as we considerα > 0.
Furthermore, we note by (4.8) that the introduction ofUmax coincided with scaling thêu of
(2.5) back to the originalu, sinceε3 = δ if α = 1, see (2.8). This is also the case for a
general choice ofα.

It is easy to check that theu-coordinate of0C(x) is given by

uC(x) = 1− (1− Umax) cosh(δ
√
ax).

Thus,uC(x) = 0 for x = xC such that cosh(δ
√
axC) = 1/(1−Umax). This equation can be

solved, and by the symmetry (4.1) we conclude that the period, or the length,TP of 0P is
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given to leading order by:

TP = TP (Umax) = 2

δ
√
a

log

(
1+√2Umax− U2

max

1− Umax

)
. (4.10)

Equivalently, one can expressUmax in terms ofTP . If we define the quantityE by

E = e
1
2TP δ
√
a

then we can use (4.10) to find an explicit expression forUmax:

Umax= (E − 1)2

E2+ 1
(+h.o.t.) (4.11)

which is less than 1. Note that we did not need an assumption on the value ofα in order to
determine thisUmax, this is clear since the periodTP (4.10) is independent ofα to leading
order. It is also possible to determine an approximation for the maximum valueVmax of V ,
the second component of equation (1.1), at the peak of the pulse:Vmax is determined by the
value ofuP = ûP (4.9) during the jump through the fast field. In the scaled coordinates,
Vmax is determined to leading order by the maximal value ofv of an unperturbed homoclinic
orbit (3.3) atu0 = uP : vmax= 3b/2uP . By scaling backwards using (2.4), we find:

Vmax=
√
a(2Umax− U2

max)

2δ
1
3α
√
b

to leading order. By (2.4) we see thatδα/3
√
b = √B, thus we did not need to know the

explicit value ofα to computeVmax: it can be avoided by scalingb back toB. The same
is also true for the explicit value ofUmin, the minimal value ofu during a period:Umin is
a rescaled version ofuP , (4.9), which does not depend explicitly onα if we reintroduceB
by (2.4). Thus, to leading order we find:

Vmax=
√
a(2Umax− U2

max)

2
√
B

Umin = 3B
√
B√

a(2Umax− U2
max)

. (4.12)

Note that in the limitUmax ↑ 1 these expressions tend to the valuesVmax andUmin of the
one-circuit homoclinic orbit described by theorem 4.1:

Vmax= 1

2

√
a

B
Umin = 3B

√
B

a
. (4.13)

4.3. The special caseα = 0

Here we focus on the, in a certain sense, degenerate caseα = 0 (and we still assume
γ = c = 0). Whenα = 0, the scalings (2.4) imply that both (2.5) and (2.9) reduce to the
unscaled system (1.4) withA = δ2a = ε2a. Note that the numerical simulations suggested
introducing the parameterα > 0; the minimum value ofu and the maximum value ofv
during a ‘pulse excursion’ scale with some power ofδ (see section 2 and the simulations in
section 6). Therefore, the choiceα = 0 does not seem to correspond to numerically stable
patterns. However, from the point of view of the phase space analysis of sections 4.1 and
4.2, it is an important limit case at which interesting bifurcations occur.

One of the main differences between the casesα = 0 andα > 0 is the fact that the
approximation of (3.6) by (3.7) is no longer valid as remarked at the end of section 3.1;
(3.7) needs to be replaced by

`U,S : p = ∓ε√a(1− u) (4.14)



Pattern formation in the one-dimensional Gray–Scott model 543

where we still writeε instead ofδ. More generally, we note that the hyperbolic solutions
0C of the slow flow onM are now given by

p2 = ε2a[(1− u)2− (1− Umax)
2] Umax6 1 (4.15)

instead of (4.7) (see figure 3(b)). Since the expressions forTo and Td still remain as in
(3.21), withb replaced by the unscaledB (of O(1)), we see that it is possible to have either
zero, one or two intersections ofTo with `U or 0C , instead of always just one as is the case
if α > 0. Theu-coordinate of0C ∩ To is to leading order a solution of

F(u;Umax)
def= u2[(1− u)2− (1− Umax)

2] = 9B3

a
u 6 Umax (4.16)

by (3.21) and (4.15). The functionF(u;Umax) is positive for u ∈ (0, Umax) and has
a maximum atu+ = u+(Umax); u+ increases monotonically as a function ofUmax;
u+(0) = 0, u+(1) = 1

2. The maximal value ofF(u,Umax) in the interval [0, Umax],
F+(Umax) = F(u+(Umax), Umax)) also increases monotonically as function ofUmax:

F+(Umax) 6 F( 1
2, 1) = 1

16.

As a consequence, we find that (4.16) has no solutions if

9B3

a
> 1

16
or a 6 144B3

to leading order. Ifa > 144B3, then (4.16) has two distinct solutions forUmax not too
small. Note thatF+(Umax) ↓ F(0, 0) = 0 asUmax ↓ 0, thus, for any pair(a, b) such that
a > 144B3 there exists a criticalUSN = USN(a, B) such that (4.15) has two solutions for
Umax> USN and no solutions forUmax< USN (in this interpretation we haveUSN(a, B) = 1
if a = 144B3).

The intersections0C ∩ To all correspond to periodic orbits of the type described by
theorem 4.2 (the argument is exactly the same as that in the proof of theorem 4.2). The orbit
0C merges with̀ U ∪ `S (3.6) forUmax= 1, thus, the intersections0C ∩ To then correspond
to orbits homoclinic to saddle pointS, as described in theorem 4.1. Combinations of orbits
from both intersections can also be constructed to create more complicated periodic orbits.
We can summarize the above in the following.

Theorem 4.3.For every ε sufficiently small,α = 0, a > 144B3 + O(ε) and for any
USN(a, B) < Umax < 1, the system (2.9) withγ = 0 has two distinct slow/fast periodic
orbits. These orbits merge in a saddle node bifurcation asUmax ↓ USN. The periodic orbits
become two distinct orbits homoclinic to the saddleS asUmax ↑ 1. The bifurcation curve
a = 144B3 +O(ε) corresponds toUSN(a, B) = Umax = 1: here a saddle node bifurcation
of homoclinic orbits takes place. Finally, whenα = 0, there are no periodic or homoclinic
orbits for a 6 144B3+O(ε).
Finally, we make a short remark on the transition fromα = 0 to α 6= 0. Theorem 4.3
seems to contradict theorems 4.1 and 4.2 since somewhere betweenα = 0 andα 6= 0
periodic/homoclinic orbits are either created or annihilated. Here, we only consider the
homoclinic orbits and show that a contradiction does not exist. The argument for the
periodic orbits is essentially the same but computationally more cumbersome. We once
more write dowǹ U for α 6= 0 (see (3.6) and (3.5) withγ = 0):

`U : p = −ε√a(1− ε 3
2 (ρ−1)u).
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This formula reduces to (4.14) asα ↓ 0 (i.e. ρ ↓ 1). Using the full expression for̀U , the
intersectioǹ U ∩ To is determined to leading order by

u(1− ε 3
2 (ρ−1)u) = 3b

√
b

a
.

Thus, there is only oneO(1) solution if ‘ε is sufficiently small’. However, ifα ↓ 0 then
ε

3
2 (ρ−1) ↑ 1 and there can be none or two solutions. Thus, a possible contradiction between

theorems 4.1 and 4.3 is avoided by employing the ‘traditional phrase’‘ε is sufficiently small’.
Theorem .1 holds forε < ε0 = ε0(α), sinceε0 must become ‘very small’ ifα becomes
small, i.e. since limα↓0 ε0(α) = 0, see also remark 2.2.

5. Travelling patterns

In this section, we search analytically for solutions of (1.1) that travel with a constant speed
c and which do not change shape in a comoving coordinate system. Note that the self-
replicating pulse solutions (numerically) found in [22] are not of this type. It was deduced
in section 2 thatc should be at leastO(δ(1+β)) for someβ > 2−α > 1

2, whereα measures
the magnitude ofu = δαû, the u-coordinate of a homoclinic solution toS ∈ M of the
unscaled system (1.2) or (1.4), during an excursion through the fast field. In other words,
α measures the magnitude of the minimal value of the solutionU(x, t) of the PDE (1.1) in
the region whereV (x, t) is peaked, that is,V (x, t) is not exponentially close to 0.

The main result (theorem 5.1) of this section is that for 06 α < 3
2 there cannot exist

orbits homoclinic toS in (2.9) for c 6= 0. Thus, theorem 5.1 implies that the one-parameter
(c) family of ‘dissipative perturbations’ of the symmetric system (1.4) withc = 0 destroys
the entire three-parameter family (a, b, α) of orbits homoclinic toS. There are no travelling
solitary pulse solutions to the PDE (1.1).

This result is surprising in the context of the geometric singular perturbation analysis of
sections 2–4. First, by simple counting arguments alone, one should expect large families
of orbits homoclinic toS. Both the stable and unstable manifolds ofS are two-dimensional,
the phase space is four-dimensional, and there are three free parameters in (1.4), or, by
the scalings, even five—a, b, γ, σ, ρ—in (2.9). Second, homoclinic orbits are known to
persist in a wide variety of systems subject to small-amplitude perturbations. Forγ = 0,
theorem 4.1 states that for anya > 0, b > 0 and 0< α < 3

2 there is a homoclinic solution
to S which corresponds to a stationary pulse solution of (1.1); moreover, whenγ = 0
andα = 0, theorem 4.3 gives the existence of either two or zero orbits homoclinic toS,
depending on the parametersa andB. The fact that the unstable and stable manifolds ofM
still have a two-dimensional intersection surface while there are no parameter combinations
such that the stable and unstable manifolds ofS ∈M intersect forγ 6= 0 shows that the
behaviour of system (2.9) is degenerate whenγ = 0.

The system’s degeneracy stems in part from the fact that for travelling pulses with
speedc smaller thanO(δ(3−α)) (i.e. σ > 0 in (2.9)), the magnitude of the evolution of the
slow field—O(ε)—is much larger than the perturbation term in the fast field, which is of
O(ε(2+σ)). We perform a rather subtle and detailed perturbation analysis, since there must
be some kind of balance between these effects in order for homoclinic orbits to exist. Our
analysis is much more delicate than that performed in section 3.

We focus on the (non-)existence of one-pulse solutions to (2.9) that are homoclinic to
S. In section 3.2, we defined the take-off curveTo ∈ M. Orbits 0−M(t; x−0 ) ⊂ M with
initial condition x−0 ∈ To determine the behaviour, for−t � 0, of all orbits0(t; x0) in the
first intersection ofWU(M) andWS(M) (with x0 ∈ WU(M)∩WS(M)∩{q = 0, v 6= 0}).
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Thus, an intersection(u−0 , p
−
0 , 0, 0) of To and `U—see (3.6)—corresponds to an orbit

0(t; x0) ∈ WU(M) ∩WS(M) which ‘originates’ onS, i.e. limt→−∞ 0(t) = S. Note that
the intersection point(u−0 , p

−
0 , 0, 0) determines the lower endpoint of the interval on`U for

which 0(t; x0) is close to`U ; however, by definition,‖0(t; x0) − (u−0 , p−0 , 0, 0)‖ > O(ε)
for t = O(1).

By construction,0(t, x0) touches down onM and is exponentially close (fort > O( 1
ε
))

to an orbit0+M(t; x+0 ) with x+0 ∈ Td. Thus,0h is a (one-circuit) homoclinic solution toS
if x+0 = (u+0 , p+0 , 0, 0) ∈ `S ∩ Td. Let x0 = (u0, p0, v0, 0) ∈ {1K = 0}, see (3.15). The
correspondingx±0 = (u±0 , p±0 , 0, 0) are given by the expressions (3.21) forTo andTd. To
construct0h(t; x0), we have to impose that(u−0 , p

−
0 ) ∈ To ∩ `U and(u+0 , p

+
0 ) ∈ Td ∩ `S :

−ε√a + h.o.t. = 1

2
ε

(
εσ γ u0− 6b

√
b

u0

)
+ h.o.t.

+ε√a + h.o.t. = 1

2
ε

(
εσ γ u0+ 6b

√
b

u0

)
+ h.o.t.

(5.1)

Adding and subtracting these two equations, we find

εσ γ u0 = h.o.t. and 2
√
a = 6b

√
b

u0
+ h.o.t. (5.2)

Thus, we recover (4.2). Moreover, we conclude thatσ > 0, since neitherγ nor u0 can be
smaller thanO(1) by the scalings of section 2, and since we assumed thatγ 6= 0, otherwise
we merely recover the stationary pulse solutions constructed in section 4.

However, so far it is not clear at all that the termεσ γ u0 cannot be ‘balanced’ by one
of the higher-order terms in (5.1). In fact,a priori, one expects that the computation of
the higher-order terms in (5.1) will lead to equations forσ and γ . Given the fact that
a travelling wave exists if a solution of system (5.1) can be found, but does not if no
solution exists, we now proceed to find the higher-order terms using the same method
as we employed above. We find the curve onWS(M) ∩ WU(M) ∩ {q = 0} along
which 1K = 0 up to and including as many higher-order terms as necessary. Then,
we derive expressions forTo and Td ⊂ M and determine the intersectionsTo ∩ `U and
Td ∩ `S , again obtaining as many higher-order terms as are necessary. To achieve both
of these objectives, we have to extend the expansion (3.11) so that we can compute a
more accurate approximation of an orbit0(t; x0) = (u(t; x0), p(t; x0), v(t; x0), q(t; x0))

with initial conditionx0 ∈ WS(M)∩WU(M)∩ {q = 0}. Only then can we determine with
sufficient precision the initial conditionsx±0 of the orbits0±M(t; x±0 ), which determineTo

andTd as defined by (3.20).
As we already did in section 3, we will frequently exploit the fact that many

terms, especially those of lower order, in the expansion of the solutions0(t) =
(u(t), p(t), v(t), q(t)) are either odd or even. This simple observation forms the foundation
of the non-existence proof below. This special character of the lower-order terms in the
expansion of0(t) can be interpreted as the remains of the symmetry (4.1) which exists in
the caseγ = 0: all solutions0(t) = (u(t), p(t), v(t), q(t)) ⊂ WU(M) ∩ WS(M) with
0(0) ∈ {q = 0} must havep(0) = 0, which yields, by the symmetry (4.1):u(t) andv(t)
are even,p(t) andq(t) are odd. Since the non-symmetric dissipative effects are of order
O(ε(2+σ)) or higher, it is clear that the lower-order terms in the expansions ofu(t) andv(t)
must be even as function oft , while those ofp(t) andq(t) must be odd. Before we present
the details of the analysis, we state the main result.
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Theorem 5.1.For γ 6= 0, 0 6 α < 3
2, and 0 < δ � 1, there are no one-pulse solutions

homoclinic toS in equation (1.4) (equivalently (2.5) or (2.9)).

Remark 5.1. For σ = 0 the result of this theorem follows immediately from the
straightforward application of the ideas developed in section 3 that led to (5.2). The case of
σ = 0 (i.e.β = 2− α) is the significant degeneration, recall (2.5); see [5] for a discussion
of what constitutes significant degeneration in singularly perturbed systems. By contrast,
we shall see in the numerical simulations of section 6 that the self-replicating pulses do
travel with this critical speedc = O(δ(1+β)) = O(δ(3−α)).
Proof of theorem 5.1. For simplicity we first consider the case 0< σ < 1 andρ > 1+ 2

3σ

so thatṗ = εuv2+ terms smaller thanO(ε3+σ ) (recallρ = 3 whenα = 1). These conditions
will minimize the technical difficulties, since we do not have to pay attention to the higher-
order terms in the equation foṙp. At the end, we show that the proof is readily generalized
to the cases ofσ > 1 and 0< ρ 6 1+ 2

3σ .
We begin by rewriting the main equations (2.9) so that we may more easily refer to

them:
u̇ = εp
ṗ = ε[uv2− ε 1

2 (3ρ+1)a − ε(2ρ+1+σ)γp + ε(3ρ−1)au]

v̇ = q
q̇ = −uv2+ bv − ε(2+σ)γ q.

(5.3)

From (3.15), we find that an orbit0(t) = (u(t), p(t), v(t), q(t)) ∈ WS(M)∩WU(M),
with 0(0) ∈ {q = 0}, must havep(0) = 1

2ε
(1+σ)γ u(0) (to leading order). Thus, we need to

adapt and extend (3.11) to:

u(t) = u0+ εu1(t)+ ε2u2(t)+ ε(2+σ)u2+σ (t)+ ε3u3(t)+O(ε4)

p(t) = εp1(t)+ ε(1+σ)p1+σ (t)+ ε2p2(t)+ ε3p3(t)+ ε(3+σ)p3+σ (t)+O(ε4)

v(t) = v0(t; u0)+ εv1(t)+ ε2v2(t)+ ε(2+σ)v2+σ (t)+O(ε3)

q(t) = q0(t; u0)+ εq1(t)+ ε2q2(t)+ ε(2+σ)q2+σ (t)+O(ε3).

(5.4)

Remark 5.2. In writing (5.4) above, we have used some foreknowledge of the equations at
each order: we did not write down those terms—such asε2+σp2+σ (t) andε3+σ u3+σ (t)—for
which it is clear without much extra analysis that they are identically zero since they need
to satisfy a trivial equation after the expansions are substituted into (2.9).

Here p1+σ (t) ≡ 1
2γ u0 by (3.15), sinceṗ1+σ = 0. We may assume, as in section 3,

that u(0) = u0 and all higher-order terms ofu are 0 att = 0. In this fashion,u0 again
parametrizes the curveWS(M) ∩ WU(S) ∩ {q = 0}; p(0) and v(0) are determined as
functions ofu0 up to any order inε. This yields thatu2+σ (t) = 1

2γ u0t . Also after inserting
(5.4) into (5.3), we immediately find that

u1 ≡ 0 p1 odd u2 even p1+σ = 1
2γ u0 v1 ≡ 0 q1 ≡ 0 (5.5)

see also section 3.
The following simple result helps us to establish the parity (odd/even) properties of

further terms in the expansion ofv.

Lemma 5.2. Let f (t) andg(t) be real-analytic functions. Letz(t) be a solution of

z̈+ f (t)z = g(t) with z(0) = z0, ż(0) = 0.

Thenz(t) is an even function oft if both f andg are even andz(t) is odd if g is odd and
z0 = 0.
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This lemma is proven by computing the derivatives dnz/dtn inductively and then evaluating
them att = 0. Applying this lemma to

v̈2+ (2u0v0− b)v2 = −u2v
2
0 (5.6)

we see thatv2 is also even (andq2 odd). Note that it is possible to obtain an explicit
expression forv2. The second-order differential operator consists of a soliton potential
created by the unperturbed homoclinic solutionv0(t) with solutions given by associated
Legendre polynomials, see for example problem 5, section 23 of [15]. However, we will
not use this.

Next, we need to extract more information from the condition that0 = (u, p, v, q) lies
in WS(M) ∩WU(M) in order to determine the initial conditions onv2(t), p2(t), etc. In
other words, we have to impose that1K = 0 on0, which using (5.5), amounts to:

1K(u0, p0) = ε2
∫ ∞
−∞

1
3p1v

3
0 dt + ε(2+σ)

∫ ∞
−∞
( 1

3p1+σ v3
0 − γ q2

0) dt

+ε3
∫ ∞
−∞

1
3p2v

3
0 dt + ε4

∫ ∞
−∞
( 1

3p3v
3
0 + p1v

2
0v2) dt

+ε(4+σ)
∫ ∞
−∞
( 1

3p3+σ v3
0 + p1v

2
0v2+σ + p1+σ v2

0v2− 2γ q0q2) dt +O(ε5).

(5.7)

The first integral vanishes, sincep1(t) is odd andv0(t) is even. Thus, by imposing1K = 0
we recoverp1+σ = 1

2γ u0 (see (3.15)). Next, the initial valuev2(0) is determined by the
value ofK|0 at q = 0. We see from the first term in (5.7) thatv2(0) 6= 0, sincep1(t) is
odd and

∫ 0
−∞

1
3p1v

3
0 dt 6= 0. Hence,K|0 ∩ {q = 0} = O(ε2).

We now determinev2+σ (t) and its initial value. Since the terms in the integrand of
theO(ε(2+σ)) integral are both even, we conclude that also the accumulated change at the
O(ε(2+σ)) level in K along a solution0 over the time intervals(−∞, 0) and (0,∞) are
the same. In fact, the two semi-infinite integrals are equal and each is precisely half of the
full integral. But, the full integral must be identically zero along a persistent homoclinic
solution,0. So, each of the half integrals is zero, as well. Hence, unlikev2, v2+σ does not
have to ‘correct’ the value ofK at t = 0, and we havev2+σ (0) = 0. Also, using (5.5), the
equation forv2+σ reads

v̈2+σ + (2u0v0− b)v2+σ = −γ (q0+ 1
2u0v

2
0t).

Therefore, we conclude, by lemma 5.2, thatv2+σ is an odd function of time.
Higher-order terms in the expansion ofp(t) along 0 are obtained as follows. By

straightforward calculations similar to that forp1(t), we find thatp2(t) ≡ p2(0) and
p3(t) = p3(0)+ an odd function. But, from theO(ε3) and O(ε4) levels of (5.7), we
know thatp2(0) = p3(0) = 0, since1K must be 0. Next, the equation forp3+σ reads:

ṗ3+σ = u2+σ v2
0 + 2u0v0v2+σ .

Here, we have usedρ > 1+ 2
3σ . Thus,p3+σ (t) is even, becauseu2+σ (t) andv2+σ (t) are

odd.
What do the above terms tell us about1K and p(0)? They imply that all terms in

the integral at theO(ε(4+σ)) level of (5.7) are even. Hence, the requirement1K = 0
fixes p3+σ (0) as a function ofu0 and γ : p3+σ (0) = F(u0; γ ). Of course,F(u0; γ ) can
be computed explicitly, but this is not needed here. Therefore, the curve{1K} = 0 ⊂
WS(M) ∩WU(M) ∩ {q = 0} is given by

p(0) = ε(1+σ)p1+σ (0)+ ε(3+σ)p3+σ (0) = 1
2ε
(1+σ)γ u0+ ε(3+σ)F (u0; γ )+O(ε4). (5.8)
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This completes the first part of the proof.
In this second part of the proof, we constructTo andTd to sufficiently high order. For a

givenx0 = (u0, p(0), v(0), 0) ∈ WS(M)∩WU(M), we must findx±0 = (u±0 , p±0 , 0, 0) ∈M
such that the orbits0M(t; x±0 ) are exponentially close to0(t; x0) for ±t > O( 1

ε
). First, we

write expansions for0M(t; x±0 ) similar to the expansion above for0(t; x0). By (5.3), we
see thatṗ = o(ε(3+σ))� O(ε(3+σ)) onM (sinceρ > 1+ 2

3σ ), which yields, fort = O(1):{
p±(t) = p±0 + o(ε(3+σ))

u±(t) = u±0 + εp±0 t + o(ε(4+σ)).
(5.9)

Second, we findp±0 andu±0 using the functionspj (t) computed above in the expansion of
p(t) along0(t). Let the functionsGj(u0) andPj (t; u0) (j = 1, 3, 3+ σ ) be defined by:

pj (t; u0) = Gj(u0)+ Pj (t; u0) with lim
t→∞Pj (t; u0) = 0 (j = 1, 3).

By construction,

G1(u0) = 1

2
1p(u0) = 3b

√
b

u0
(5.10)

where we recall (3.12) and (3.18). In terms of these functions, we may write the expansion
of p(t) for t > 0 as

p(t) = (εG1+ ε(1+σ)p1+σ (0)+ ε3G3+ ε(3+σ)(p3+σ (0)+G3+σ ))
+(εP1(t)+ ε3P3(t)+ ε(3+σ)P3+σ (t))

where we have neglected higher-order terms. Also, fort > 0, the expansion ofu(t) along a
homoclinic orbitu(t) is known fromp(t) and (5.3). Now, the initial conditionp+0 = p+0 (u0)

is determined by the condition thatp+(t) andp(t) have the same asymptotic behaviour.
Since thePj (t)’s vanish for larget , we conclude from (5.9) that

p+0 (u0) = εG1(u0)+ ε(1+σ)p1+σ (0)+ ε3G3(u0)+ ε(3+σ)(p3+σ (0)+G3+σ (u0))+ h.o.t.

(5.11)

Also, by defining

H1(u0) =
∫ ∞

0
P1(t; u0) dt

we find by (5.3) and (5.9) that

u+0 (u0) = u0+ ε2H1(u0)+O(ε4). (5.12)

Thep+0 andu+0 coordinates ofTo are clearly implicitly related, since both are functions
of u0 by (5.8). Taylor expanding the functionsGj in the right-hand side of (5.11) aboutu+0
and using (5.12), we get:

p+0 (u0) = εG1(u
+
0 )+ ε(1+σ)p1+σ (0)+ ε3(G3(u

+
0 )−G′1(u+0 )H1(u

+
0 ))

+ε(3+σ)(p3+σ (0)+G3+σ (u+0 ))+ h.o.t. (5.13)

Similarly, one must Taylor expand the functionsF and

p1+σ (0) = γ

2
u0 = γ

2
(u+0 − ε2H1(u

+
0 ))+ h.o.t.

Therefore, we find

Td : p − εG1− ε3(G3−G′1H1)− ε(3+σ)G3+σ = 1
2ε
(1+σ)γ u

+ε(3+σ)(F − 1
2γH1)+ h.o.t. (5.14)
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wherep = p+0 , u = u+0 andG′1 = dG1/du(u).
Using the parity (odd/even) properties of the functionspj (t), we immediately find the

analogous results forp−0 , u−0 andTo:

p−0 (u0) = −εG1(u0)− ε(1+σ)p1+σ (0)− ε3G3(u0)+ ε(3+σ)(p3+σ (0)
+G3+σ (u0))+ h.o.t.

u−0 (u0) = u0+ ε2H1(u0)+O(ε4).

(5.15)

Theu−0 andp−0 coordinates forTo are also implicitly related, since both are functions ofu0

by (5.8). This relation can be made explicit in a straightforward manner:

To : p + εG1+ ε3(G3−G′1H1)− ε(3+σ)G3+σ = 1
2ε
(1+σ)γ u

+ε(3+σ)(F − 1
2γH1)+ h.o.t. (5.16)

wherep = p−0 , u = u−0 andG′1 = dG1/du(u). Note that to leading order, these expressions
(5.14) and (5.16) correspond to those obtained forTo andTd in (3.21).

A travelling pulse with a speedc = δ(1+β)γ , such thatβ > 2 − α, or equivalently
σ > 0, exists foru0 such that the corresponding orbit0h(t; x0), with initial condition
x0 = (u0, p(0; u0), v(0; u0), 0), lies in the intersection ofWS(S) andWU(S). In other
words, the take-off point(u−0 (u0), p

−
0 (u0)) of 0h must be on`U = WU(S) ∩M, and

the touch-down point(u+0 (u0), p
+
0 (u0)) ∈ `S . Thus, we have to compute the intersections

To ∩ `U andTd ∩ `S . Expanding (3.6) yields:

`U : p = −ε√a + ε 1
2 (3ρ−1)√au+ h.o.t.

where the higher-order terms are smaller thanO(ε(3+σ)) for anyσ > 0. A similar expression
can be obtained for̀S . The homoclinic solution0h exists foru0, γ andσ which satisfy the
system of equations given byTo ∩ `U andTd ∩ `S , whereu0 appears only implicitly in the
equations throughu = u±0 (u0) in the expressions (5.16) forTo and (5.14) forTd. However,
we observe by (5.12) and (5.15) thatu−0 (u0) = u+0 (u0) up toO(ε4), thus we can solve the
system defined byTo ∩ `U andTd ∩ `S in terms ofu = u−0 = u+0 andγ , instead ofu0 and
γ . Adding these two equations, and dividing byε(1+σ), yields:

γ u+ ε2(2G3+σ − γH1+ 2F) = h.o.t. (5.17)

We now observe that it is not possible to solve this equation unless we admitγ = 0: due
to the symmetries there are no terms left which can ‘balance’ theO(1) term γ u. Note that
u 6= 0 by (5.2). This proves the theorem in the case 0< σ < 1, ρ > 1+ 2

3σ .
Before we go on with the proof of the general case, we make two observations. First, we

note that subtracting the equations forTo∩`U andTd∩`S just gives higher-order corrections
to the critical value ofu0 (see (5.2)). Second, we note thata priori one might think that
theO(ε2) part of (5.17) causes problems, since it also must be zero. However, one can
check, in a straightforward manner, the behaviour of the terms in (5.4) as function ofγ

and conclude thatG3+σ = G3+σ (u0; γ ) = γ Ĝ3+σ andF = F(u0; γ ) = γ F̂ (u0). Thus, the
O(ε2) term also disappears whenγ = 0.

The question now is: what happens ifρ andσ do not satisfy these conditions? Let us
first consider 1< σ < 2. It is easy to see how expansion (5.4) should be modified:
the σ -dependence now only occurs at the levelsu2+σ = u3+(σ−1), p1+σ = p2+(σ−1),
p3+σ = p4+(σ−1), v2+σ = v3+(σ−1) and q2+σ = q3+(σ−1). It is also easy to show that
u0, u1, u2, u3 are even,v0, v1, v2, v3 are evenp1, p2, p3, p4 are odd, andq0, q1, q2, q3 are
odd: exactly as in the above case, these solutions do not feel the dissipative terms yet and
thus obey the symmetry (4.1). The equations foru2+σ , p3+σ , v2+σ andq2+σ are the same as
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those in the caseσ < 1. Thus, the only differences betweenTo, Td in the case 0< σ < 1
and the case 1< σ < 2 are some extrasymmetricalterms ofO(ε4) in (5.16) and (5.14).
These terms all cancelwhen we add the equations forTo ∩ `U andTd ∩ `S . Thus: there is
no change in(5.17). Again, we have to conclude thatγ = 0 and that the theorem holds.

The same will happen for any value ofσ : all symmetrical contributions of the
expansions will vanish when we add the equations forTo ∩ `U and Td ∩ `S : (5.17) will
not change, so the theorem holds. The only extra technical complications appear when
σ = 1, 2, . . . , since then we have to split the solutionsu2+σ , p3+σ , v2+σ and q2+σ in an
even and an odd part: one part takes care of the dissipative effects and the other obeys (4.1).
Only the first part appears in (5.17) so that it again does not change. A similar technicality
has to be taken into account in the case whenρ is less than or equal to 1+ 2

3σ : expansion
(5.4) has to be adapted to include the higher-order effects in the equation forṗ in (5.3)
which appear before the dissipative effects. However, these higher-order terms also obey
symmetry (4.1), thus they will not appreciably influence (5.17). This concludes the proof
of theorem 5.1. �
Remark 5.3. In section 4 we found thatα = 0 was a special case since the approximation
(3.7) of (3.6) could not be used in this case. In the proof of theorem 5.1 we did not pay
attention to the special caseα = 0: this is not necessary since it again has no influence on
those terms in the equations forTo ∩ `U andTd ∩ `S which do not cancel after addition.

Remark 5.4. The proof of theorem 5.1 also implies the non-existence of travelling patterns
consisting of the periodic stationary patterns translating uniformly in time. We recall that
the central argument used to establish theorem 5.1 relies on the adiabatic Melnikov function
1K to find solutions in the transverse intersection of the stable and unstable manifolds of
M, as well as on the calculation of1p, to insure that the jump in thep coordinate during
a fast excursion precisely bridges the gap between`U and `S . The existence of periodic
patterns whenγ 6= 0 relies on precisely these same two calculations. Moreover, the details
are similar: the fast excursion corresponds to an orbit of the fast subsystem that lies in the
transverse intersection of the slow plane’s stable and unstable manifolds, and the jump inp

must coincide with the horizontal distance between two points on the same hyperbolic orbit
0C onM. Since these conditions have the same form as those for the travelling one-pulse
solutions, arguments similar in structure to those used above show that no such solution is
possible.

Remark 5.5. Besides extending to the non-existence of periodic travelling solutions,
theorem 5.1 also extends to show the non-existence ofN -pulse homoclinic travelling
waves for anyN = O(1), implying that theγ = 0 symmetry of (2.9) is broken and
all of the orbits given by theorem 4.1 disappear whenγ > 0. Instead of looking for
zeroes of1K as we did for one-pulse orbits, however, one looks for zeroes of the
appropriate inductively definedN -pulse adiabatic Melnikov function [28]:1KN(u, p; ε) ≡
1KN−1(u, p; ε)+1K1(u, p+ε 9b2

4u

∑N−1
i=1 τi), whereτi denotes the period of the unperturbed

periodic orbit of the fast subsystem with slow parameteru and with energy given by1Ki−1;
also,1K1(u, p) ≡ 1K(u, p), as introduced in section 3. The same proof as given in [28]
for planar Hamiltonian systems depending on a slowly varying parameter (herep) implies
here that1KN is the correct higher-order adiabatic Melnikov function for (2.9), because the
fact that1u = O(ε2) during each fast excursion relegatesu to the status of a parameter in
this calculation. Now, since the periodsτi for i = 1, . . . , N−1 only diverge logarithmically
asε→ 0, the arguments of the terms in the sum for1KN lie close top0, thep−coordinate
of the zero of1K. Therefore, the simple zeroes of1KN lie close to those of1K, and the
asymptotic expansions for theN−pulse case are similar in structure (with extra log terms
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that cannot be balanced by theγ terms) to those of the one-pulse case. Thus, the same
argument as used above also rules out the existence ofN−pulse travelling waves. Note
that of course one requires thatN1p equals the horizontal distance between`U and `S ,
instead of requiring that1p equal that distance.

6. Numerical simulations

In this section, we study the numerically observed dynamics of the PDE (1.1). In order to
do numerical calculations, we have to restrictx to a bounded interval. However, to obtain
patterns which can be described by the analysis of the previous section we only consider
intervals that are long enough so that the boundaries are ‘far away’ and do not influence
the dynamics. The simulations presented in this section have been repeated several times
on intervals of different lengths. We only show the outcome of simulations on intervals
which are so large that enlarging the intervals did not influence the behaviour. Moreover,
we have done the simulations with different types of boundary conditions and checked that
this also did not change the dynamics inside the interval.

There are three parameters in (1.1):A, B and δ. We have rescaledA and B into
A = δ2a andB = bδ2α/3 in section 2;α measures the magnitude ofB. In this section,
we focus on the choiceα = 1, this means that, as was observed in [22], we assume that
U = O(δ) during a ‘pulse-excursion’ ofV . Note that this choice is not essential since
we have seen in section 4.2 that the maximum and minimum values ofU andV can be
expressed in an unscaled form, independent of an explicit value ofα, see (4.12) and (4.13).
Reynolds, Pearson, Ponce-Dawson, and Hasslacher observed self-replicating pulse patterns
for the choiceδ2 = 0.01,A = 0.02 andB = 0.079 in (1.1) see figure 1 of [22] and figure 2
of [3]. These values correspond in our scaling toa = 2 andb ≈ 0.37. Below, we shall
frequently chooseδ2 = 0.01, a = 2 andb = 0.4, so that we can compare with the results
of [22].

6.1. The code

We used a moving-grid code to integrate system (1.1). The code, which is described in
detail in [2], is designed to numerically solve systems of time-dependent PDE models
in one space dimension having solutions with steep gradients in space and time. The
moving-grid technique in the code is based on a Lagrangian description of the PDE model
combined with a smoothed-equidistribution principle to define the grid positions at each
time level. The dynamically moving adaptive grid is coupled to a discretization method
which automatically discretizes the spatial part of the user-defined PDE system following the
method-of-lines approach. The spatial discretization and the time-integration are carried out
with a nonlinear Galerkin method and an implicit (stiff) BDF method with variable order
and step-size control, respectively. It must be noted that application of the moving-grid
code is not restricted to reaction-diffusion equations of type (1.1). The interested reader is
referred to [2] and [33], where PDEs from various other application areas have been solved
using this technique.

The boundary conditions are of Dirichlet type:

U(x̃ = 0, t) = U(x̃ = 1, t) = 1 V (x̃ = 0, t) = V (x̃ = 1, t) = 0.

Neumann conditions were also used, but did not influence the inner solutions. Moreover,
the initial data for the results we report consists of a sharp pulse centred in the middle of
the spatial domain:U(x̃, 0) = 1− 1

2 sin100(πx̃), andV (x̃, t = 0) = 1
4 sin(πx̃). The spatial
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variable x̃ is a rescaled version of the spatial variablex in (1.1): x̃ has been scaled such
that the numerical simulations always take place on thex̃-interval [0, 1].

Since we wanted to be able to observe patterns described by the analysis of this paper,
we focused in the numerical simulations on values ofa andb which areO(1) with respect
to δ. Our search in the(a, b)-parameter space of (1.1) has not yet found patterns that
differ essentially from the ones described and shown below (by contrast, for largera, we
have observed various different patterns; an example is shown in section 7, figure 10, of a
structurally different pattern ata = 9, b = 0.4 andδ2 = 0.01). Moreover, especially the
dynamic splittings—the self-replications of the travelling pulses—are driven by processes
which are very sensitive to the numerical accuracy: if there are not enough grid points
‘on’ a V -pulse, a splitting just cannot occur, or occurs much later. Thus, if one does not
use enough grid points (or a non-moving grid) one is tempted to conclude that the self-
replicating process does not occur. This observation also means that the error made by
the code can ‘explode’ in a very short amount of time. For all numerical tests we have
used 400 moving grid points to take care of the sharp pulses. In one case (20 pulses,
tend= 20 000) 600 grid points had to be used (figures 7 and 8). Note that a conventional
non-moving uniform would have required several (4–5) times more grid points than used
for the moving-grid case.

Moreover, we found that decreasingδ increased both the (temporal) distance between
successive splittings and the number of necessary grid points so drastically that one
approaches very rapidly the limits of the machine one is working on forδ2 � 0.01 if
one is interested in the long-time behaviour of the self-replicating patterns (see section 6.3
and figures 7 and 8).

Before we start the description of the patterns observed in the numerical simulations we
remark on the magnitude ofδ, both as a small quantity in our asymptotic analysis and as
part of the data in the numerical simulations. First we note that by our scalingsε = δ1/3 (see
(2.8), α = 1) is the ‘true’ asymptotically small quantity of the analysis. This means that a
‘standard’ choice ofε = 0.1 corresponds to a value ofδ2 = 10−6 as input in the numerical
simulations of equation (1.1). On the other hand we noted that choices ofδ2 = 0.003
are already near the boundary of the capacity of the hardware and software one is using.
Thus, theoretically, one expects only a small overlap between the numerically ‘safe’ and
the analytically ‘safe’ regions. However, we shall see that there is a good qualitative and
quantitative agreement between the analytical predictions and the numerical observations.

6.2. Stationary behaviour and a transition region

In the bifurcation analysis we performed, we fixedb at a certain value,b ∈ (0.2, 1), and
varied a over a certain range,a ∈ (0.2, 5) (approximately). For each parameter pair, we
repeated the simulations for several values ofδ, but we found that the value ofδ did not
have an essential influence on the dynamics, except for the time scale of the evolution. For
a > 0 ‘too small’, we observed the following behaviour:

lim
t→∞U(x, t) ≡ 1 lim

t→∞V (x, t) ≡ 0.

Note that this is not completely surprising, since the trivial pattern(U ≡ 1, V ≡ 0) is an
asymptotically stable solution of (1.1) on the unbounded domain.

As we increasea, we enter a transition region between the trivial behaviour and the
self-replicating pulse regime. Moreover, we find that the transition region is not a clear
one-dimensional bifurcation curve in the(a, b)-parameter space, and the behaviour in the
transition region depends rather subtly on the initial conditions and small perturbations.
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First, we observe stable, stationary solitary-pulse solutions of the type constructed in
section 4.1 (see figure 1 in section 2). These solutions of (1.1) are precisely the one-circuit
slow/fast homoclinic described by theorem 4.1, and they seem to be stable in this transition
region (see below for a quantitative check). In figure 1, we show plots ofU(x, t) and
V (x, t) for a = 1 andb = 0.6. Note that they are insensitive to the details of the initial
one-pulse concentration.

Second, we find parameter values at which initial solitary pulses split into two non-
travelling pulses. These depend sensitively on the initial concentrations in the interval.
These patterns donot correspond to the two-circuit homoclinic solutions described by
theorem 4.1 (N = 2): V becomes exponentially small between the two fast excursions,
while the two-circuit pulse described by theorem 4.1 does not approach the slow manifold
M closer thanO(

√
ε) during its circuits through the fast field. Using the symmetry (4.1)

it is not hard to show that such a solution to the stationary problem (1.4) or (2.9) with
γ = 0 does not exist: a homoclinic solution which takes off at`U ∩To can only touch down
exactly on`S ∩ Td. This is confirmed by the numerics: although the pulses do not move,
the two-pulse pattern is not stationary. In figure 5, we see that the heights of the two pulses
‘dance’ up and down until one of them disappears completely and only a stationary solitary
pulse remains. Note that this pulse is not located exactly in the middle of thex-interval,
contrary to the initial values ofU andV . We found that the length and the outcome of this
process (i.e. the answer to the question: ‘which pulse disappears after what period of time?’)
depends very sensitively on small perturbations. It also depends on the width of the initial
V -pulse whether the solutionsV undergoes an initial splitting, as in figure 5, or whether
it does not. In the latter case, the initial solution deforms immediately into a stationary
solitary peak described by theorem 1 (N = 1) (see figure 1(a): the pulse is exactly at the
middle of thex-interval).

We now compare the outcome of the numerical simulations with the analytical results
of section 4.1. We show numerically stable stationary one-pulses fora = 1, b = 0.6, with
δ2 = 0.01 in figure 1(a) and withδ2 = 0.003 in figure 1(b). Numerically, we find:

δ2 = 0.01 : Vmax≈ 1.11 Umin ≈ 0.16

δ2 = 0.003 : Vmax≈ 1.49 Umin ≈ 0.08.

SinceB = bδ2/3, (4.13) implies:

δ2 = 0.01 : Vmax≈ 1.39 Umin ≈ 0.14

δ2 = 0.003 : Vmax≈ 1.69 Umin ≈ 0.076

to leading order. The leading-order correction tov̂max, theO(1) scaled version ofVmax, is
O(ε). By (2.4) we see thatVmax is O( 1

ε
) to leading order, withε = δ1/3 ((2.8) andα = 1).

We conclude that the leading-order correction in the above-determined theoretical value of
Vmax is O(1). The differences between the numerically observed values ofVmax and the
theoretical predictions are clearly within this range. Furthermore, we note that the relative
error, |V num

max − V theo
max |/V num

max , decreases asδ is decreased (from≈ 0.25 for δ2 = 0.01 to
≈ 0.13 for δ2 = 0.003) and that these errors are again well within the theoretical bound
of O(ε) (ε ≈ 0.46 for δ2 = 0.01 andε ≈ 0.38 for δ2 = 0.003). A similar argument
yields that the distance between the numerically observed value ofUmin and the above
theoretical prediction is within the leading order correction to the theoretical value ofUmin

of O(εδ) = O(ε4) (ε4 ≈ 0.046 for δ2 = 0.01, ε4 ≈ 0.021 for δ2 = 0.003).
One might expect that it should be possible to find a (numerically stable) two-circuit

pulse solution—as described by theorem 4.1 forN = 2—in this transition region, by varying
the initial conditions. We did not do an extensive numerical search to find these solutions;
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Figure 5. A pair of dancing pulses observed in numerical simulations of (1.1) witha = 0.6,
b = 0.4, andδ2 = 0.01: (a) at time t = 250; (b) at time t = 350; (c) at time t = 450; and
(d) at time t = 500, showing that only the left pulse survives as a stable solitary pulse in the
asymptotic state. The concentration,U , is given by a broken curve, and the concentration,V ,
is denoted by a full curve.

however, we did find that in the transition from initial data which splits into two solitary
‘dancing’ pulses to a non-splitting initial condition, there exist initial conditions that initiate
solutions which are like the stationary two-circuit pulse for a very long time (but, eventually,
V becomes exponentially small between the peaks and the ‘dancing behaviour’ starts).

6.3. Self-replicating pulses

For values ofa above this transition region (withb still fixed), we observe that the two
solitary pulses created from the initial condition at the first, stationary splitting begin to
move away from each other, both with the same, constant speed (see below for a discussion
on the magnitude of this speed). We know from section 5 that these patterns cannot be
interpreted as some kind of nonlinear superposition of two solitary travelling pulses with
speedsc and−c: these solutions do not exist. This observation is remarkable, if one only
pays attention to theV solution, sinceV seems to be exponentially small between the two
travelling peaks (see figure 6(a), wherea = 2). However,U does not ‘return’ to 1 in
between the pulses, which should be the case for the solitary travelling waves studied in
section 5. On the other hand, the maximum value ofU between the two travellingV -pulses
grows towards 1 as the distance between these pulses grows: the travelling pulses begin to
resemble the non-existing solitary pulses more and more. A conflict with the non-existence
result of theorem 5.1 would occur if these pulses go on travelling away from each other
with constant speed, without changing shape, while the value ofU approaches 1 ‘in the
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Figure 6. The dynamic pulse-splitting process at times: (a) t = 2100; (b) t = 2150; (c)
t = 2200; and (d) t = 2400. New pulses are formed on the trailing (inner) edges of the existing
two pulses (near thex-values corresponding to the inflection points ofU ) and are sent into the
centre of the domain. Herea = 2, b = 0.4, andδ2 = 0.01.

middle’: both pulses then become identical to the solitary travelling pulses considered in
section 5.

Therefore, something else must happen: fora = 2, we see in figures 6(b)–(d) that
bothV pulses split into two similar travelling pulses (with distinct speed) yielding a pattern
of four moving pulses. After yet more time, all four of theseV pulses split once again,
and this process of replication continues for the outermost two pulses on each side until an
equilibrium state is reached. In fact, the number of peaks a domain can support depends on
a andb. In figure 7, we show the solutionsU andV at time t = 20 000 for the choice of
parametersa = 2, b = 0.4 andδ2 = 0.01. There are 20 peaks present.

For the same simulation shown in figure 7, we plot the positions of the grid points of
our code as functions of time in figure 8. The position of theV pulses is revealed by a
local concentration of grid points. Thus, due to the character of the code, we can follow
the pulses and their self-replicating behaviour by plotting the positions of the grid points.
Note that the horizontal bands in figure 8 just indicate the fact that one (or more) of the
pulses ‘needs more grid points’ since it is near a self-replication: the other pulses ‘send’
some of ‘their’ grid points to the self-replicating one(s). Thus, the horizontal bands suggest
dynamical behaviour for a largex-interval, but, the dynamics are only local, near a number
of self-replicating pulses, for the solutions(U, V ) of the PDE (1.1).

From these observations, as well as from those of many other initial data, it seemsa
priori that the solutions to (1.1) withA (a) andB (b) in the splitting region have a strictly
non-stationary behaviour. However, we observe in figure 8 that only the outermost pairs of
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Figure 7. The pulse pattern observed att = 20 000 fora = 2, b = 0.4, andδ2 = 0.01, where
600 moving grid points were used.

pulses continue the self-replicating process: after a pulse has been created by a ‘boundary
pulse’ it only splits just one more time. The two resulting pulses are then enclosed by other
pulses: it is as if the pulses are repelling each other. As a consequence, we observe that the
core of the pattern created by the self-replicating process is astationary, periodic pattern of
the type described by theorem 4.2: it clearly has distinguished slow and fast parts. This can
also be seen in figure 7: the pattern in the middle (middle 6 peaks) is clearly periodic inU

andV . It follows from grid dynamics (figure 8) that this periodic core is also stationary.
Note also that the splittings of the boundary pulses and their latest images have a tendency to
occur simultaneously after sufficiently large times in this simulation. Lastly, we remark that
in addition to this outer pair splitting process, we have observed other sequences of pulse
splittings. However, after ‘long’ times, all of these patterns had periodic cores described by
the stationary periodic solutions of theorem 4.2. Moreover, theUmax andTP of these cores
were accurately related by the theoretically deduced equations (4.10) and (4.11).

This statement is also readily verified quantitatively in the simulations. We make a
quantitative comparison of the periodic core properties of the pattern in figure 7 with the
periodic solutions constructed in section 4.2. Numerically, for the case shown in figure 7,
we find that:

TP ≈ 20 Umax≈ 0.54 Vmax≈ 1.26 Umin ≈ 0.07.

We know from section 4.2 thatTP and Umax are related by (4.10) or (4.11). Inserting
Umax = 0.54 into (4.10) givesTP ≈ 19.97 (wherea = 2, b = 0.4 and δ2 = 0.01).
Equivalently, we find that insertingT = 20 into (4.11) yields a value ofUmax which agrees
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Figure 8. Positions of the grid points as functions of time for the moving grid code described
in section 6.1 for the same parameters as used in figure 7. Note that the first dynamic splitting
occurs earlier than in figure 6 (althougha = 2, b = 0.4 and δ2 = 0.01 in both cases): the
simulations have different initial conditions (the initial conditions are the same in the rescaled
variablex̃).

with the numerically observed one. The fact that the numerically measured values ofTP
andUmax obey the relations (4.10) and (4.11) with this accuracy is a bit surprising: both
(4.10) and (4.11) are just the leading-order approximations. Nevertheless, this result at least
indicates that the stationary periodic patterns at the core of the self-replicating patterns are
described by the slow/fast periodic solutions of theorem 4.2. Moreover, we can use (4.12)
to ‘predict’ the leading-order values ofVmax andUmin for this pattern:Vmax ≈ 2.14 and
Umin ≈ 0.06. Both values differ from the numerically observed values by an amount which
is of the order of the leading-order corrections to (4.12) determined above.

Finally, we remark on the speed±c of the ‘boundary pulses’ of the self-replicating
pattern. It is clear from figure 8 that this speed is (at least at leading order) constant for all
time. We noted that this speed approaches zero asa decreases towards the above described
transition region. Thus,c clearly depends ona andb. However,c also depends onδ. We
have seen in section 5 that the magnitude ofc with respect toδ does have an essential
influence on the singular perturbation analysis. Therefore, we performed the following
experiment: we fixeda = 2 andb = 0.4, and we variedδ2. We waited until the ‘boundary
pulses’ were created and moved, and then we measured their speedc. In figure 9, we
present a log–log plot of thisc as a function ofδ: c is clearlyO(δ2). Note that this is
exactly the value at which significant degeneration of the asymptotic analysis occurs, as
encountered in section 5.
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Figure 9. The log–log plot of the speed with which the outermost pulses travel as a function
of δ showing that this speed scales asO(δ2); a andb are kept fixed ata = 2, b = 0.4.

7. Discussion

We have proven the existence of single-pulse solutions for anya andb (the rescaled versions
(2.4) of A and B in (1.1)). However, only those witha and b in the transition region
described in section 6 are observed, and thus probably stable. A similar selection occurs for
the periodic patterns constructed in section 4.2: for anya, b andUmax < 1 (Umax= O(1))
there exists a stationary periodic pulse pattern, but periodic patterns are only observed for
parameter values(a, b) in the self-replicating pulse region (section 6). Moreover,Umax is
also selected by the process. Furthermore, the numerical simulations suggest that also the
parameterα, which we can choose in the interval [0, 3

2) in the analysis of section 4, is
the subject of a selection process: our simulations and those in [22] suggest thatα ≈ 1
(note thatα is determined by the magnitude ofB with respect toδ (remark 2.4), therefore,
it is not possible to determineα exactly, for given values ofδ andB). Determining the
analytical origin of these selection mechanisms is the subject of future research.

In addition, the pulse-splitting process requires considerable further analysis. A chemical
explanation has been given for when the dynamic splitting should commence—indicating
that the onset time coincides with the time at which the flux ofU into the tail of the
moving pulse exceeds the minimum level needed to sustain a new pulse [22]. A formal
mathematical analysis for pulse-splitting has been developed in [22, 23]. Our simulations
suggest that the process occurs largely at the ‘fronts’ of the moving-pulse pattern. In
particular, for the simulation reported in section 6.3, the outermost pair of moving pulses
on each side were the ones that self replicated, and as time progressed, these self-replicating
edge pairs created the stationary, periodic core of the self-replicating pulse pattern. This
observation is consistent with the chemistry explanation in the sense that only between the
new, outermost, pulses is there enoughU present (both from the as yet unconsumed supply
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Figure 10. A plot of the solution to (1.1) with parametera 6= O(1): a = 9, b = 0.4, δ2 = 0.01:
(a) at t = 100, (b) at t = 500, and (c) at t = 1000. As in figure 7 there is a stationary periodic
core, but it has not been created by a pulse-splitting process.

available in the domain and from the reservoir) to create new pulses. By contrast, in the
core region, all of theU supplied by the reservoir is needed to maintain the already existing
pulses, and there is very little excess (free, unconsumed)U in between the pulses.

Although we did not perform any detailed analysis on the system withA > O(δ2), we
believe that an approach similar to that established here—based on a different scaling of
the parameters and variables—can be used in this region of phase space. The combination
of such an analysis and simulations might give another explanation of the origin of the
self-replicating pulse process. In figure 10, we plot the results of a simulation witha = 9,
b = 0.4 andδ2 = 0.01. Thus, it is not natural to assume thatA = aδ2 = O(δ2). However,
just as in the casea = O(1) a first stationary splitting occurs, but,V does not become
exponentially small between the two travelling boundary pulses (figure 10(a)). Moreover,
we observe thatU remains small in that region: it seems that the slow manifoldM is much
less important in this case. No pulse-splitting occurs, but, after some time there is again a
stationary periodic core (see figure 10(b) and (c)). This core is now formed by a stationary
solution which ‘lives’ entirely in the fast field. As we decreasea we observe that the pulse-
splitting process starts as soon as the periodic orbit at the core of the pattern touches down on
M. For completeness we note that the choice of parameters for the simulation of figure 10 is
a little bit outside the chemical relevant region sinceA = aδ2 = 0.09> B = bδ2/3 ≈ 0.086
(see remark 2.3). However, the pattern does not change significantly if we decreasea a
little such thatA < B.



560 A Doelman et al

Note that it is not hard to show that the ‘purely fast’ stationary periodic orbits do not
exist in our scaled system (2.5) and (2.9): the accumulated change inp along such an
orbit cannot be zero (cf (3.18)). However, such orbits can be created by a Hopf bifurcation
around critical points in the fast field of the unscaled (1.4) system which exist ifA > 4B2

(see also [11, 22]). These critical points did not appear in this paper sinceA cannot be
larger than 4B2 by the scalings ((2.4),α < 3

2) derived in this paper. Analogously, one can
say that the fact that the pulse patterns are not observed for values ofA andB outside
the region defined by our scalings, justifies these scalings: they were derived as necessary
conditions for the existence of the pulse-like solutions (see section 2). Thus, the phenomena
described above cannot be described by the main equations of this paper, (2.5) and (2.9),
but we believe that they can be studied by methods similar to those employed in this paper.

It is clear that all of the necessary ingredients of the analysis in this paper also exist in
other systems of the general form:

∂U

∂t
= ∇2U + f1(U, V )

∂V

∂t
= δ2∇2V + f2(U, V )

(7.1)

wheref1 andf2 satisfy some additional conditions. In particular, the nonlinearities must be
such that the fast kinetics have one or more equilibria connected to themselves by homoclinic
or heteroclinic orbits. In addition, the slow subsystems must possess either equilibria with
stable and unstable manifolds or other orbit segments that are transverse to the appropriate
take-off and touch-down curves defined by the fast homoclinics and/or heteroclinics. Once
again one can check numerically whether the constructed patterns can be stable. Moreover,
whether the non-existence of travelling waves plays a role in signalling that a general system
exhibits pulse replication can also be investigated, sincea priori it is not clear that general
systems of the form (7.1) which do have (stable) stationary pulse-like patterns share the
nonexistence result of (1.1).
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Appendix. Details of the scaling analysis

In this appendix, we derive the scalings (2.4) presented in section 2. We begin by plugging
in the rescaledu andγ (2.3) into the fast field, which is the fast(v, q) part of (1.4):

v̇ ≡ vη = q
q̇ ≡ qη = −δβγ̂ q − δαûv2+ Bv. (A.1)
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The fast system (A.1) is linear in the limitδ→ 0 (if α > 0) and has no solutions which are
homoclinic to the saddle point(v, q) = (0, 0). This is a crucial deficiency of the fast field,
since this—again—means that a solution which leaves the neighbourhood ofM cannot
return toM. Thus, in order to be able to construct homoclinic solutions toS, we need
scalings ofv, q andB such that the leading-order fast field supports homoclinic solutions.
In particular, we introducev = δ−r v̂, r > 0 andq = δs q̂; herer ands are free parameters
which will be determined later on. We balance theûv2 andBv terms in (A.1) by setting
B = δ(α−r)b. We now observe that̂vη = O(δ(r+s)) and q̂η = O(δ(α−2r−s)). We impose
r+ s = α−2r− s, since the distinguished limit in the second-orderv̂ equation occurs when
v̂ and its derivativêq evolve on the same time scale. Thus,s = 1

2(α− 3r). Introducing the

new independent variablêη = δ 1
2 (α−r)η, (A.1) transforms to:

v̂η̂ = q̂
q̂η̂ = −ûv̂2+ bv̂ − δ 1

2 (2β−α+r)γ̂ q̂.
(A.2)

This equation has all necessary features so that it can serve as fast field in the rescaled
version of (1.4). Note that we again have to impose that the ‘friction’ termγ̂ q̂ is o(1), i.e.
2β − α + r > 0.

When we introduce all the above scalings, supplemented with a scaling forp: p = δt p̂
for some t > 0, into the slow part of (1.4), we find that̂uη̂ = O(δ 1

2 (r+2t+2−3α)) and
p̂η̂ = O(δ 1

2 (2+α−3r−2t)) (i.e. the ‘ûv̂2’-term is the leading order term in̂pη̂, the other terms
in p̂η̂ are assumed to be o(1)). Since the distinguished limit also occurs when the dependent
variable—hereû—varies at the same rate as its derivative, we sett = α − r. This gives
the following rescaled equations:

ûη̂ = δ 1
2 (2−α−r)p̂

p̂η̂ = δ 1
2 (2−α−r)[ûv̂2− δ(1+β+r)γ̂ p̂ − δ(2+2r−α)a + δ2+2raû]

(A.3)

with the additional assumption 2− α − r > 0, so that the(û, p̂)-subsystem remains slow
compared to the(v̂, q̂)-subsystem.

Combining the fast and the slow subsystems (A.2) and (A.3), we note that there are two
different leading-order perturbation scales: the slow ‘time’-scaleδ

1
2 (2−α−r) in (A.3) and the

‘friction’-term of O(δ 1
2 (2β−α+r)) in (A.2). It follows from the analysis presented in section 3

that the stable and unstable manifolds of the slow manifoldM can only intersect if the
friction-term is of the same order as the square of the leading-order termδ

1
2 (2−α−r) in (A.3)

(i.e. it is ofO(δ(2−α−r))) for the existence of the desired homoclinic solution0h(η). Thus,
a homoclinic solution0h(η) to S ∈ M can only exist if the leading-order perturbation
in the complete(û, p̂, v̂, q̂)-system isO(δ 1

2 (2−α−r)). Hence, when a solution makes an
excursion through the fast field, one expects that bothû and p̂ will change by an amount
of O(δ 1

2 (2−α−r)). Sincep = δ(α−r)p̂, this implies that an excursion through the fast field
modifiesp by an amount ofO(δ 1

2 (2+α−3r)). The homoclinic solution0h(η) must ‘jump’
from `U to `S (2.2) by such an excursion through the fast field. Due to the scaling (2.1),
we know that̀ U and`S areO(δ) apart; thus, we have to chooser such that it satisfies the
following ‘jump condition’: 1

2(2+ α − 3r) = 1 or r = 1
3α. With this value ofr, one

directly obtains the scalings given in (2.4).



562 A Doelman et al

References

[1] Becker P K and Field R J 1985 Stationary concentration patterns in the oregonator model of the Belousov–
Zhabotinski reaction,J. Phys. Chem.89 118–28

[2] Blom J G and Zegeling P A 1994 Algorithm 731: a moving-grid interface for systems of one-dimensional
time-dependent partial differential equationsACM Trans. Math. Software20 194–214

[3] Dawson S P, Hasslacher B and Pearson J E 1996 Lattice gas simulations of replicating domains,Pattern
Formation and Lattice Gas Automata (Proc. NATO Workshop, Waterloo, Canada, June 1993) (Fields
Institute Communications)ed A Lawniczak and R Kapral (Providence, RI: American Mathematical
Society)

[4] Dewel G and Borckmans P 1990 Localized structures in reaction-diffusion systemsPatterns, Defects, and
Material Instabilitiesed D Walgraef and N M Ghoniem (Dordrecht: Kluwer) pp 63–72

[5] Eckhaus W 1979Asymptotic Analysis of Singular Perturbations(Amsterdam: North-Holland)
[6] Ermentrout G B, Hastings S P and Troy W C 1984 Large amplitude stationary waves in an excitable lateral-

inhibitory mediumSIAM J. Math. Anal.44 1133–49
[7] Fenichel N 1979 Geometrical singular perturbation theory for ordinary differential equationsJ. Diff. Eqns31

53–98
[8] Goldstein R E, Muraki D J and Petrich D M 1996 Interface proliferation and the growth of labyrinths in a

reaction-diffusion systemPhys. Rev.E 53 3933–57
[9] Gray P and Scott S K 1983 Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas

and other forms of multistabilityChem. Eng. Sci.38 29–43
[10] Gray P and Scott S K 1984 Autocatalytic reactions in the isothermal, continuous stirred tank reactor:

oscillations and instabilities in the system A+ 2B→ 3B, B→ C Chem. Eng. Sci.39 1087–97
[11] Gray P and Scott S K 1985 Sustained oscillations and other exotic patterns of behaviour in isothermal

reactionsJ. Phys. Chem.89 22–32
[12] Jones C K R T 1995 Geometric singular perturbation theory,Dynamical Systems (Montecatibi Terme, 1994)

(Lecture Notes in Mathematics 1609)ed R Johnson (Berlin: Springer)
[13] Jones C K R T,Kaper T J and Kopell N 1996 Tracking invariant manifolds up to exponentially small errors

SIAM J. Math. Anal.27 558–77
[14] Kapral R 1995 Pattern formation in chemical systemsPhysica86D 149–57
[15] Landau L D and Lifschitz E M 1977 Quantum mechanics: non-relativistic theoryCourse on Theoretical

Physicsvol 3, 3rd edn (Oxford: Pergamon)
[16] Lee K J, McCormick W D, Ouyang Q and Swinney H L 1993 Pattern formation by interacting chemical

fronts Science261 192–4
[17] Lin K-J, McCormick W D, Pearson J E and Swinney H L 1994 Experimental observation of self-replicating

spots in a reaction-diffusion systemNature369 215–18
[18] Malevents A, Careta A and Kapral R 1995 Biscale chaos in propagating frontsPhys. Rev.E 52 4724
[19] Palmer K 1986 Transversal heteroclinic points and Cherry’s example of a nonintegrable Hamiltonian system

J. Diff. Eqns65 321–60
[20] Pearson J E and Horsthemke W 1989 Turing instabilities with nearly equal diffusion coefficientsJ. Phys.

Chem.90 1588–99
[21] Pearson J E 1993 Complex patterns in a simple systemScience261 189–92
[22] Reynolds W N, Pearson J E and Ponce-Dawson S 1994 Dynamics of self-replicating patterns in reaction

diffusion systemsPhys. Rev. Lett.72 2797–800
[23] Reynolds W N, Pearson J E and Ponce-Dawson S 1996 Self-replicating spots, submitted
[24] Robinson C 1983 Sustained resonance for a nonlinear system with slowly-varying coefficientsSIAM J. Math.

Anal. 14 847–60
[25] Rohricht B and Horsthemke W 1991 A bifurcation sequence to stationary spatial patterns in a nonuniform

chemical model system with equal diffusion coefficientsJ. Chem. Phys.94 4421–6
[26] Rovinsky A B 1991 Diffusive instabilities and pattern formation in the Belousov-Zhabotinsky reaction

Nonlinear Wave Processes in Excitable Mediaed A V Holden, M Markus and H G Othmer (New York:
Plenum) pp 191–200

[27] Soto-Trevino C and Kaper T J 1995 Periodic orbits in singularly-perturbed systems,Nonlinear Dynamics and
Pattern Formation in the Natural Environment (Pitman Research Notes in Mathematics 335)ed A Doelman
and A van Harten pp 295–314

[28] Soto-Trevino C and Kaper T J 1995 Higher-order Melnikov theory for adiabatic systemsJ. Math. Phys.37
6220–49

[29] Turing A M 1952 The chemical basis of morphogenesisPhil. Trans. R. Soc.B 237 37–72



Pattern formation in the one-dimensional Gray–Scott model 563

[30] Vastano J A, Pearson J E, Horsthemke W and Swinney H L 1987 Chemical pattern formation with equal
diffusion coefficientsPhys. Lett.124A 320–4

[31] Vastano J A, Pearson J E, Horsthemke W and Swinney H L 1988 Turing patterns in an open reactorJ. Chem.
Phys.88 6175–81

[32] Wiggins S 1988Global Bifurcations and Chaos(New York: Springer)
[33] Zegeling P A, Verwer J G and v Eijkeren J C H1992 Application of a moving-grid method to a class of 1d

brine transport problems in porous mediaInt. J. Numer. Meth. Fluids15 175–91


