13 research outputs found

    Viral Load and Cell Tropism During Early Latent Equid Herpesvirus 1 Infection Differ Over Time in Lymphoid and Neural Tissue Samples From Experimentally Infected Horses

    Get PDF
    Upper respiratory tract infections with Equid Herpesvirus 1 (EHV-1) typically result in a peripheral blood mononuclear cell-associated viremia, which can lead to vasculopathy in the central nervous system. Primary EHV-1 infection also likely establishes latency in trigeminal ganglia (TG) via retrograde axonal transport and in respiratory tract-associated lymphatic tissue. However, latency establishment and reactivation are poorly understood. To characterize the pathogenesis of EHV-1 latency establishment and maintenance, two separate groups of yearling horses were experimentally infected intranasally with EHV-1, strain Ab4, and euthanized 30 days post infection (dpi), (n = 9) and 70 dpi (n = 6). During necropsy, TG, sympathetic trunk (ST), retropharyngeal and mesenteric lymph nodes (RLn, MesLn) and kidney samples were collected. Viral DNA was detected by quantitative PCR (qPCR) in TG, ST, RLn, and MesLn samples in horses 30 and 70 dpi. The number of positive TG, RLn and MesLn samples was reduced when comparing horses 30 and 70 dpi and the viral copy number in TG and RLn significantly declined from 30 to 70 dpi. EHV-1 late gene glycoprotein B reverse transcriptase PCR and IHC results for viral protein were consistently negative, thus lytic replication was excluded in the present study. Mild inflammation could be detected in all neural tissue samples and inflammatory infiltrates mainly consisted of CD3+ T-lymphocytes (T-cells), frequently localized in close proximity to neuronal cell bodies. To identify latently infected cell types, in situ hybridization (ISH, RNAScope®) detecting viral DNA was used on selected qPCR- positive neural tissue sections. In ganglia 30 dpi, EHV-1 ISH signal was located in the neurons of TG and ST, but also in non-neuronal support or interstitial cells surrounding the neuron. In contrast, distinct EHV-1 signal could only be observed in neurons of TG 70 dpi. Overall, detection of latent EHV-1 in abdominal tissue samples and non-neuronal cell localization suggests, that EHV-1 uses T-cells during viremia as alternative route toward latency locations in addition to retrograde neuronal transport. We therefore hypothesize that EHV-1 follows the same latency pathways as its close relative human pathogen Varicella Zoster Virus

    Histopathologic Findings Following Experimental Equine Herpesvirus 1 Infection of Horses

    Get PDF
    Histopathological differences in horses infected with equine herpesvirus type 1 (EHV-1) of differing neuropathogenic potential [wild-type (Ab4), polymerase mutant (Ab4 N752), EHV-1/4 gD mutant (Ab4 gD4)] were evaluated to examine the impact of viral factors on clinical disease, tissue tropism and pathology. Three of 8 Ab4 infected horses developed Equine Herpesvirus Myeloencephalopathy (EHM) requiring euthanasia of 2 horses on day 9 post-infection. None of the other horses showed neurologic signs and all remaining animals were sacrificed 10 weeks post-infection. EHM horses had lymphohistiocytic vasculitis and lymphocytic infiltrates in the lungs, spinal cord, endometrium and eyes. EHV-1 antigen was detected within the eyes and spinal cord. In 3/6 of the remaining Ab4 infected horses, 4/9 Ab4 N752 infected horses, and 8/8 Ab4 gD4 infected horses, choroiditis was observed. All males had interstitial lymphoplasmacytic and/or histiocytic orchitis and EHV-1 antigen was detected. In conclusion, only animals sacrificed due to EHM developed overt vasculitis in the CNS and the eye. Mild choroiditis persisted in many animals and appeared to be more common in Ab4 gD4 infected animals. Finally, we report infiltrates and changes in the reproductive organs of all males associated with EHV-1 antigen. While the exact significance of these changes is unclear, these findings raise concern for long-term effects on reproduction and prolonged shedding of virus through semen

    Case report: Androgen-secreting adrenocortical tumors in eight cats

    Get PDF
    Urine marking, aggression, and other behavioral concerns are common reasons for cat owners to seek veterinary care. Empiric treatment for lower urinary tract disease or primary behavior disorders are commonly pursued, especially in those cases with normal routine laboratory evaluations. Herein, we report the clinicopathologic findings in eight sexually altered cats that were diagnosed with androgen-secreting adrenocortical tumors. Nearly all cats (n = 7) initially were evaluated for inappropriate urination and pungent urine, with additional behavioral concerns including aggression (n = 3) and excess vocalization (n = 4) commonly reported. Penile barbs (n = 5) were identified in all five male cats, and an enlarged clitoris was observed in one female cat. Testing of serum androgen concentrations revealed abnormally high androstenedione (n = 1) or testosterone (n = 7) concentrations. In the five cases with available adrenal tissue, histopathologic evaluation identified either an adrenocortical adenoma (n = 3) or adrenocortical carcinoma (n = 2). Hormonal abnormalities resolved and clinical signs improved in the four cats that underwent surgical adrenalectomy, with each of these cats surviving >1 year. However, clinical signs were minimally impacted with medical treatments, including one cat in which trilostane treatment failed to improve clinical signs or testosterone concentrations. This collection of cases underscores the importance of a detailed physical examination as well as the consideration of endocrine disturbances in cats undergoing evaluation for inappropriate urination or aggression. Furthermore, this report adds to the growing body of evidence that sex-hormone secreting adrenal tumors in cats may be an under-recognized syndrome

    Malignant transformation of canine oral papillomavirus (CPV1)-associated papillomas in dogs: An emerging concern?

    No full text
    Canine oral papillomavirus (CPV1, also known as COPV), the most common cause of non-neoplastic papillomas, has not been shown to cause squamous cell carcinomas (SCC). Furthermore, malignant transformation of benign papillomas to SCC has only been reported in a single group of dogs with severe combined immunodeficiency infected with CPV2. Here, we report a series of 7 dogs with benign CPV1-associated papillomas with histologic evidence of CPV1 causing malignant transformation to carcinoma in situ and ultimately SCC. Expression of p53 and p16 proteins in CPV1-infected cells within the benign papillomas and lesions that progressed into SCC also supported an association between papillomavirus and malignant transformation. Moreover, our retrospective analysis indicated that while there have been increased numbers of viral papillomas with malignant transformation, the number of annually diagnosed canine viral papillomas has remained constant over the past decade in our laboratory. We speculate that either an altered host immunity from increased usage of immunosuppressive drugs or changing environmental factors, e.g. increase exposure to UV radiation, may cause an increased oncogenic potential of this “low-risk” virus. This study aims to raise awareness of the malignant potential of CPV1 and to encourage further investigations into the cause of this suspected change in its oncogenic potential. Keywords: Canine oral papillomavirus, Benign lesions, Malignant transformation, Squamous cell carcinom

    Genomic characterization of Erethizon dorsatum papillomavirus 2, a new papillomavirus species marked by its exceptional genome size

    No full text
    We report here the complete sequence and genome organization of a new papillomavirus, Erethizon dorsatum papillomavirus 2 (EdPV2), which was isolated from cutaneous lesions observed on the muzzle of a North American porcupine. The complete genome is 8809 nucleotides long and encodes five early (E6-E7-E1-E2-E4) and two late proteins (L2-L1). In addition to the upstream regulatory region, the EdPV2 genome contains an exceptionally large secondary non-coding region with no apparent functional relevance. EdPV2 is strongly divergent from the previously described porcupine papillomavirus EdPV1 and phylogenetic analysis shows EdPV2 clustering near members of the genus Pipapillomavirus, a group of rodent papillomaviruses. Pairwise sequence comparison based on the L1 open reading frame identifies Rattus norvegicus papillomavirus 1 as the closest related virus (59.97 % similarity). Based on its low sequence similarity to other known papillomaviruses, EdPV2 is thought to represent a new genus in the family Papillomaviridae.status: publishe

    Transconjunctival excision of an orbital conjunctival cyst using computer‐assisted 3‐D surgical planning in a dog

    No full text
    Abstract Investigation of exophthalmos and blood‐colored discharge from the left ventral punctum in a dog was consistent with a conjunctival cyst in the orbit. 3‐D prints of the cyst and surrounding facial bones identified a successful transconjunctival approach without an orbitotomy and patency of the left lacrimal duct was reestablished

    Computerized Calculation of Mitotic Count Distribution in Canine Cutaneous Mast Cell Tumor Sections: Mitotic Count Is Area Dependent.

    Get PDF
    Mitotic count (MC) is an important element for grading canine cutaneous mast cell tumors (ccMCTs) and is determined in 10 consecutive high-power fields with the highest mitotic activity. However, there is variability in area selection between pathologists. In this study, the MC distribution and the effect of area selection on the MC were analyzed in ccMCTs. Two pathologists independently annotated all mitotic figures in whole-slide images of 28 ccMCTs (ground truth). Automated image analysis was used to examine the ground truth distribution of the MC throughout the tumor section area, which was compared with the manual MCs of 11 pathologists. Computerized analysis demonstrated high variability of the MC within different tumor areas. There were 6 MCTs with consistently low MCs (MC<7 in all tumor areas), 13 cases with mostly high MCs (MC ≥7 in ≥75% of 10 high-power field areas), and 9 borderline cases with variable MCs around 7, which is a cutoff value for ccMCT grading. There was inconsistency among pathologists in identifying the areas with the highest density of mitotic figures throughout the 3 ccMCT groups; only 51.9% of the counts were consistent with the highest 25% of the ground truth MC distribution. Regardless, there was substantial agreement between pathologists in detecting tumors with MC ≥7. Falsely low MCs below 7 mainly occurred in 4 of 9 borderline cases that had very few ground truth areas with MC ≥7. The findings of this study highlight the need to further standardize how to select the region of the tumor in which to determine the MC

    Equid herpesvirus-1 Distribution in Equine Lymphoid and Neural Tissues 70 Days Post Infection

    No full text
    Equid herpesvirus-1 (EHV-1) causes respiratory disease, abortion and myeloencephalopathy in horses worldwide. As member of the Alphaherpesvirinae, latency is key to EHV-1 epidemiology. EHV-1 latent infection has been detected in the trigeminal ganglion (TG), respiratory associated lymphoid tissue (RALT) and peripheral blood mononuclear cells (PBMC) but additional locations are likely. The aim of this study was to investigate the distribution of viral DNA throughout the equine body. Twenty-five horses divided into three groups were experimentally infected via intranasal instillation with one of three EHV-1 viruses and euthanized on Day 70, post infection. During necropsy, TG, various sympathetic/parasympathetic ganglia of head, neck, thorax and abdomen, spinal cord dorsal root ganglia, RALT, mesenteric lymph nodes, spleen and PBMC of each horse were collected. Genomic viral loads and L-(late) gene transcriptional activity in each tissue and PBMC were measured using qPCR. In addition, immunohistochemistry (IHC) was applied on neural parenchyma tissue sections. EHV-1 DNA was detected in many neural and lymphoid tissue sections, but not in PBMC. L-gene transcriptional activity was not detected in any sample, and translational activity was not apparent on IHC. Tissue tropism differed between the Ab4 wild type and the two mutant viruses
    corecore