26 research outputs found
Analytical investigation techniques in the service of liposome development
The quality of the liposome formulations differs based on the features of the compositions. Several investigation methods help with their results to make the right decision to achieve an optimised preparation. During these sets of experiments to prepare liposomes via the thin-film hydration technique, dynamic light scattering (DLS) and zeta potential measurements, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) investigations, and Fourier-transformed infrared (FT-IR) studies were used to select the more optimal compositions. The formulations differed in the phospholipid-cholesterol ratio, the type of the applied PEGylated phospholipid, the quality of the solvent, the hydration media and the cryoprotectant
Ball-Milling Enhanced UV Protection Performance of Ca2Fe-Sulisobenzone Layered Double Hydroxide Organic Clay
Using a co-precipitation technique, the anionic form of sulisobenzone (benzophenone-4) sunscreen ingredient was incorporated into the interlayer space of CaFe-hydrocalumite for the first time. Using detailed post-synthetic millings of the photoprotective nanocomposite obtained, we aimed to study the mechanochemical effects on complex, hybridized layered double hydroxides (LDHs). Various physicochemical properties of the ground and the intact LDHs were compared by powder X-ray diffractometry, N2 adsorption-desorption, UV–Vis diffuse reflectance, infrared and Raman spectroscopy, scanning electron microscopy and thermogravimetric measurements. The data showed significant structural and morphological deformations, surface and textural changes and multifarious thermal behavior. The most interesting development was the change in the optical properties of organic LDHs; the milling significantly improved the UV light blocking ability, especially around 320 nm. Spectroscopic results verified that this could be explained by a modification in interaction between the LDH layers and the sulisobenzone anions, through modulated π–π conjugation and light absorption of benzene rings. In addition to the vibrating mill often used in the laboratory, the photoprotection reinforcement can also be induced by the drum mill grinding system commonly applied in industry
Quality by Design-Driven Zeta Potential Optimisation Study of Liposomes with Charge Imparting Membrane Additives
Liposomal formulations, as versatile nanocarrier systems suitable for targeted delivery, have a highly focused role in the therapy development of unmet clinical needs and diagnostic imaging techniques. Formulating nanomedicine with suitable zeta potential is an essential but challenging task. Formulations with a minimum ±30 mV zeta potential are considered stable. The charge of the phospholipid bilayer can be adjusted with membrane additives. The present Quality by Design-derived study aimed to optimise liposomal formulations prepared via the thin-film hydration technique by applying stearylamine (SA) or dicetyl phosphate (DCP) as charge imparting agents. This 32 fractional factorial design-based study determined phosphatidylcholine, cholesterol, and SA/DCP molar ratios for liposomes with characteristics meeting the formulation requirements. The polynomials describing the effects on the zeta potential were calculated. The optimal molar ratios of the lipids were given as 12.0:5.0:5.0 for the SA-PBS pH 5.6 (optimised sample containing stearylamine) and 8.5:4.5:6.5 for the DCP-PBS pH 5.6 (optimised sample containing dicetyl phosphate) particles hydrated with phosphate-buffered saline pH 5.6. The SA-PBS pH 5.6 liposomes had a vesicle size of 108 ± 15 nm, 0.20 ± 0.04 polydispersity index, and +30.1 ± 1.2 mV zeta potential, while these values were given as 88 ± 14 nm, 0.21 ± 0.02, and −36.7 ± 3.3 mV for the DCP-PBS pH 5.6 vesicles. The prepared liposomes acquired the requirements of the zeta potential for stable formulations
Quality by Design Based Formulation Study of Meloxicam-Loaded Polymeric Micelles for Intranasal Administration
Our study aimed to develop an “ex tempore” reconstitutable, viscosity enhancer- and preservative-free meloxicam (MEL)-loaded polymeric micelle formulation, via Quality by Design (QbD) approach, exploiting the nose-to-brain pathway, as a suitable tool in the treatment of neuroinflammation. The anti-neuroinflammatory effect of nose-to-brain NSAID polymeric micelles was not studied previously, therefore its investigation is promising. Critical product parameters, encapsulation efficiency (89.4%), Z-average (101.22 ± 2.8 nm) and polydispersity index (0.149 ± 0.7) and zeta potential (−25.2 ± 0.4 mV) met the requirements of the intranasal drug delivery system (nanoDDS) and the targeted profile liquid formulation was transformed into a solid preservative-free product by freeze-drying. The viscosity (32.5 ± 0.28 mPas) and hypotonic osmolality (240 mOsmol/L) of the reconstituted formulation provides proper and enhanced absorption and probably guarantees the administration of the liquid dosage form (nasal drop and spray). The developed formulation resulted in more than 20 times faster MEL dissolution rate and five-fold higher nasal permeability compared to starting MEL. The prediction of IVIVC confirmed the great potential for in vivo brain distribution of MEL. The nose-to-brain delivery of NSAIDs such as MEL by means of nanoDDS as polymeric micelles offers an innovative opportunity to treat neuroinflammation more effectively
Pharmaceutical Development and Design of Thermosensitive Liposomes based on the QbD Approach
This study aimed to produce thermosensitive liposomes (TSL) by applying the quality by design (QbD) concept. In this paper, our research group collected and studied the parameters that significantly impact the quality of the liposomal product. Thermosensitive liposomes are vesicles used as drug delivery systems that release the active pharmaceutical ingredient in a targeted way at ~40–42 °C, i.e., in local hyperthermia. This study aimed to manufacture thermosensitive liposomes with a diameter of approximately 100 nm. The first TSLs were made from DPPC (1,2-dipalmitoyl-sn-glycerol-3-phosphocholine) and DSPC (1,2-dioctadecanoyl-sn-glycero-3-phosphocholine) phospholipids. Studies showed that the application of different types and ratios of lipids influences the thermal properties of liposomes. In this research, we made thermosensitive liposomes using a PEGylated lipid besides the previously mentioned phospholipids with the thin-film hydration method