160 research outputs found

    Generalized extreme value regression for binary response data: An application to B2B electronic payments system adoption

    Full text link
    In the information system research, a question of particular interest is to interpret and to predict the probability of a firm to adopt a new technology such that market promotions are targeted to only those firms that were more likely to adopt the technology. Typically, there exists significant difference between the observed number of ``adopters'' and ``nonadopters,'' which is usually coded as binary response. A critical issue involved in modeling such binary response data is the appropriate choice of link functions in a regression model. In this paper we introduce a new flexible skewed link function for modeling binary response data based on the generalized extreme value (GEV) distribution. We show how the proposed GEV links provide more flexible and improved skewed link regression models than the existing skewed links, especially when dealing with imbalance between the observed number of 0's and 1's in a data. The flexibility of the proposed model is illustrated through simulated data sets and a billing data set of the electronic payments system adoption from a Fortune 100 company in 2005.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS354 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Asymptotics of a Clustering Criterion for Smooth Distributions

    Full text link
    We develop a clustering framework for observations from a population with a smooth probability distribution function and derive its asymptotic properties. A clustering criterion based on a linear combination of order statistics is proposed. The asymptotic behavior of the point at which the observations are split into two clusters is examined. The results obtained can then be utilized to construct an interval estimate of the point which splits the data and develop tests for bimodality and presence of clusters

    Model-Based Method for Social Network Clustering

    Full text link
    We propose a simple mixed membership model for social network clustering in this note. A flexible function is adopted to measure affinities among a set of entities in a social network. The model not only allows each entity in the network to possess more than one membership, but also provides accurate statistical inference about network structure. We estimate the membership parameters by using an MCMC algorithm. We evaluate the performance of the proposed algorithm by applying our model to two empirical social network data, the Zachary club data and the bottlenose dolphin network data. We also conduct some numerical studies for different types of simulated networks for assessing the effectiveness of our algorithm. In the end, some concluding remarks and future work are addressed briefly

    Wavelet modeling of priors on triangles

    Get PDF
    AbstractParameters in statistical problems often live in a geometry of certain shape. For example, count probabilities in a multinomial distribution belong to a simplex. For these problems, Bayesian analysis needs to model priors satisfying certain constraints imposed by the geometry. This paper investigates modeling of priors on triangles by use of wavelets constructed specifically for triangles. Theoretical analysis and numerical simulations show that our modeling is flexible and is superior to the commonly used Dirichlet prior

    Bayesian isotonic changepoint analysis

    Get PDF
    A general approach to Bayesian isotonic changepoint problems is developed. Such isotonic changepoint analysis includes trends and other constraint problems and it captures linear, non-smooth as well as abrupt changes. Desired marginal posterior densities are obtained using a Markov chain Monte Carlo method. The methodology is exemplified using one simulated and two real data examples, where it is shown that our proposed Bayesian approach captures the qualitative conclusion about the shape of the trend change.Departamento de Matemátic

    Bayesian modeling with spatial curvature processes

    Full text link
    Spatial process models are widely used for modeling point-referenced variables arising from diverse scientific domains. Analyzing the resulting random surface provides deeper insights into the nature of latent dependence within the studied response. We develop Bayesian modeling and inference for rapid changes on the response surface to assess directional curvature along a given trajectory. Such trajectories or curves of rapid change, often referred to as \emph{wombling} boundaries, occur in geographic space in the form of rivers in a flood plain, roads, mountains or plateaus or other topographic features leading to high gradients on the response surface. We demonstrate fully model based Bayesian inference on directional curvature processes to analyze differential behavior in responses along wombling boundaries. We illustrate our methodology with a number of simulated experiments followed by multiple applications featuring the Boston Housing data; Meuse river data; and temperature data from the Northeastern United States
    corecore