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Wavelet modeling of priors on triangles

Dipak K. Dey� and Yazhen Wang

Department of Statistics, University of Connecticut, U-4120, Storrs, CT 06269, USA

Received 26 February 2001

Abstract

Parameters in statistical problems often live in a geometry of certain shape. For example,

count probabilities in a multinomial distribution belong to a simplex. For these problems,

Bayesian analysis needs to model priors satisfying certain constraints imposed by the

geometry. This paper investigates modeling of priors on triangles by use of wavelets

constructed specifically for triangles. Theoretical analysis and numerical simulations show that

our modeling is flexible and is superior to the commonly used Dirichlet prior.
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1. Introduction

Unknown parameters in practical statistical problems often have some con-
straints. These constraints force the parameter space to satisfy certain geometry, and
statistical inference must take the geometry into consideration. For example,
suppose a map is made up of many regions, each painted in one of three colors, and
we wish to estimate the proportions, y1; y2; y3 of the map covered by each color. If
we had a method of choosing independently and uniformly at random, n points on
the map and it gave ni points in color labeled by index i; then n1; n2; n3 have the

trinomial distribution, where n ¼ n1 þ n2 þ n3: Clearly, the parameter space T ¼
fy ¼ ðy1; y2; y3Þ: 0pyip1;

P3
i¼1 yi ¼ 1g is a simplex. In order to perform a Bayesian

analysis, prior distributions for y must be selected to live on the corresponding
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geometry, i.e., simplex in this case. Here we consider the case that parameters belong
to a triangle. Dirichlet priors are commonly used in the literature when the
parameter space is a simplex. For example, West [7] used Dirichlet prior for
modeling probabilities for expert opinion. As an alternative to Dirichlet prior,
Aitichison [1] developed a general class of distributions on the simplex. Gelfand et al.
[4] used a mixture of Beta prior, Wolpert and Lavine [8] used Markov random field,
and Iyengar and Dey [5] used generalized Liouville distribution when the parameter
space is restricted to a simplex. In this paper, we employ wavelets which are
specifically constructed to model priors on the triangle. The wavelet-based priors are
not only conceptually simple and very flexible but also can well approximate all
practically reasonable prior distributions. Moreover, the properties of wavelets allow
us to use available information to specify priors with certain features.
The rest of the paper is organized as follows. Section 2 develops multiwavelets on

a triangle. In Section 3, we show that the wavelet-based priors are flexible and can
well approximate any true priors on the triangle. We further show that the posterior
distributions and Bayesian estimators resulted from using the wavelet-based prior
and the true prior are very close. Thus, for prior elicitation in a Bayesian analysis, a
wavelet-based prior is quite robust. Finally, results based on simulations are
developed in Section 4 to demonstrate effectiveness of the wavelet-based prior and
compare with Dirichlet priors under various scenarios.

2. Multiwavelets on a triangle

Wavelets are typically constructed on simple domains like Euclidian spaces and
their rectangular subsets. To construct wavelets on a triangle we split the triangle
into four same-size small triangle by midpoint subdivision and continue the splitting
again and again to obtain self-similar triangles. The construction of wavelets on the
square makes quite extensive use of Fourier analysis. However, on complicated
domains like triangles, Fourier analysis becomes less accessible, so simple
polynomial operations are used to design wavelets on these domains.

2.1. Multiresolution analysis on triangles

Let T be a triangle. Consider its successive refinement fTj;k; jX1; kAIjg; where
Ij ¼ f1;y; 4jg; and each triangle in a finer scale is constructed from one in a
coarser level by midpoint subdivision, denoted the resulting three subtriangles by

Tj;k ¼ Tjþ1;k0,Tjþ1;k1,Tjþ1;k2,Tjþ1;k3 :

For consistency, let T0 ¼ T : We use the convention that the center and the four
peripheral subtriangles in the midpoint subdivision of Tj;k are indexed by Tjþ1;k0 ;
Tjþ1;k1 ; Tjþ1;k2 ; Tjþ1;k3 ; respectively; and when no confusion occurs, simply by

T0;T1;T2;T3: The edges of Tjþ1;k0 are indexed by e1j;k; e2j;k; e3j;k or simply by e1; e2; e3;

ARTICLE IN PRESS
D.K. Dey, Y. Wang / Journal of Multivariate Analysis 89 (2004) 338–350 339



such that ei represents the common boundary of T0 and Ti: For dX0; let

Pd ¼ fxiyj; i þ jpdg; PdðTÞ ¼ f f ; f jTAPd ; f jR2\T ¼ 0g;

where f jT denotes the restriction of f on T : Then dimðPdÞ ¼ dimðPdðTÞÞ ¼ M ¼
ðd þ 1Þðd þ 2Þ=2: For

T ¼ T0,T1,T2,T3;

define

V ¼ PdðT0Þ"PdðT1Þ"PdðT2Þ"PdðT3Þ and W ¼ V~PdðTÞ:

Then dimðVÞ ¼ 4M and dimðWÞ ¼ 3M: Now we will construct orthogonal basis for

PdðTÞ and W : We denote an orthonormal basis for PdðTÞ by fwcT ; 0pcoMg or
simply by wT as a vector of functions and an orthonormal basis for W by

fhc
ei
; 0pcoM; i ¼ 1; 2; 3g; or simply by the vector notation h1; h2; h3: Given such an

orthonormal basis, we have orthonormal basis for L2ðTÞ:

fwT0
; hei

j;k
; i ¼ 1; 2; 3; jX0; kAIjg;

and any fAL2ðTÞ has a decomposition

f ¼ a0wT0
þ
X3
i¼1

XN
j¼0

X
kAIj

bi
j;khei

j;k
;

where

a0 ¼ /f ; wT0
S ¼ ð/f ; w0T0S;y;/f ; wM	1

T0
SÞ

and

bi
j;k ¼ /f ; hei

j;k
S ¼ ð/f ; h0ei

j;k
S;y;/f ; hM	1

ei
j;k

SÞ:

For a nested triangular tessellation Tj;k of T ; let

Vj ¼
M

kAIj

PdðTj;kÞ

be the space of piecewise polynomials of degree less than d on each of Tj;k: Then

multiresolution analysis (MRA) on the triangle T is given by

(1) VjCVjþ1;
(2) limj-N Vj ¼ L2ðTÞ;
(3) fwcTj;k

; 0pcoM; kAIjg form an orthonormal basis for Vj;
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(4) Each of wcTj;k
is compactly supported at Tj;k;

(5) For each Tj;k; there exists four M x M matrices Hi such that

wTj;k
¼
X3
i¼0

HiwTjþ1;ki
:

2.2. Barycentric coordinates

Barycentric coordinate is convenient to work with in the following construction of
wavelets on a triangle. Let Pi ¼ ðxi; yiÞ be the ordered list of three vertices of T : A
point P ¼ ðx; yÞ can be expressed in terms of its barycentric coordinates t ¼
ðt1; t2; t3ÞT with respect to T as follows:

P ¼
X3
i¼1

tiPi;

where
P3

i¼1 ti ¼ 1: If P is inside T ; then tiX0:

Change of coordinates from Cartesian to barycentric can be easily carried out by
the following transformation:

xðt1; t2Þ
yðt1; t2Þ

 !
¼

x1 	 x3 x2 	 x3

y1 	 y3 y2 	 y3

 !
t1
t2

 !
þ

x3

y3

 !
:

Changing barycentric coordinate from one reference triangle to another obeys the
following rule. If P has barycentric coordinates t0 ¼ ðt10; t20; t30ÞT 0 relative to another

triangle T 0 defined by three vertices fðxi
0; yi

0Þ; i ¼ 1; 2; 3g; then
ðt10; t20; t30ÞT 0 ¼ ðt1; t2; t3ÞT MT-T 0 ;

where

MT-T 0
0 ¼

x1
0 x2

0 x3
0

y1
0 y2

0 y3
0

1 1 1

0
B@

1
CA

	1
x1 x2 x3

y1 y2 y3

1 1 1

0
B@

1
CA:

Midpoint subdivision can be easily described using barycentric coordinates by

restricting ti bounded below or above
1
2
:

Thus, with a wavelet basis constructed on a triangle T ; using the property of
barycentric coordinate we easily obtain a wavelet basis on triangle T 0:

2.3. Construction of scaling functions

Scaling functions wcT0 are orthogonal polynomials supported by T0 so that

/wcT0 ; w
c0
T0
S ¼ dcc0 :
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The construction is based on Legendre-type polynomial basis. Due to the mutilation
property, we first construct the basis on triangle TB with vertices ð0; 0Þ; ð0; 1Þ; ð1; 0Þ:
Since the power basis f1; x; y; x2; xy; y2;y; g is equal to f1; t2; 1	 t1 	 t2; t22; ð1	
t1 	 t2Þt2; ð1	 t1 	 t2Þ2;y; g in barycentric coordinates with respect to TB;
applying the Gram–Schmidt process to the latter sequence we get Legendre

polynomials fpc; cX0g on TB:

Let wcTB
¼ pc1TB

: Then the resulting sequence S ¼ fwcTB
g will be a triangular

sequence of orthogonal polynomials: for any dX0; the first M ¼ ðd þ 1Þðd þ 2Þ=2
elements of S form an orthonormal basis for PdðTBÞ: Here are the first few
members of S:

w0TB
ðt1; t2Þ ¼

ffiffiffi
2

p
1TB

ðt1; t2Þ;

w1TB
ðt1; t2Þ ¼ ð	2þ 6t2Þ1TB

ðt1; t2Þ;

w2TB
ðt1; t2Þ ¼ 2

ffiffiffi
3

p
ð1	 2t1 	 t2Þ1TB

ðt1; t2Þ;

w3TB
ðt1; t2Þ ¼

ffiffiffi
6

p
ð1	 8t2 þ 10t22Þ1TB

ðt1; t2Þ;

w4TB
ðt1; t2Þ ¼ 3

ffiffiffi
2

p
ð	1þ 2t1 þ 6t2 	 10t1t2 	 5t22Þ1TB

ðt1; t2Þ;

w5TB
ðt1; t2Þ ¼

ffiffiffiffiffi
30

p
ð1	 6t1 þ 6t21 	 2t2 þ 6t1t2 þ t22Þ1TB

ðt1; t2Þ:

Mutilation gives us the scaling function as

wcTj;k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2jTj;kj

s
wcTB

; 0pcoM:

2.4. Mother multiwavelets

With an orthonormal basis for PdðTÞ; we now construct an orthonormal basis for
W ¼ fPdðT0Þ"PdðT1Þ"PdðT2Þ"PdðT3Þg~PdðTÞ:

Let fpcTg be the Legendre polynomials mutilated to the triangle T : Define for
i ¼ 1; 2; 3; c ¼ 0; 1;y;M 	 1;

hc
i ðt1; t2; t3Þ ¼

pcTi
ððt1; t2ÞMT-T 0 Þ on Ti;

	pcTi
ððt1; t2ÞMT-T 0 Þ on T\Ti;

0 otherwise:

8><
>:

Note that fhc
i g,fwcTg spans PdðT0Þ"PdðT1Þ"PdðT2Þ"PdðT3Þ: We will modify

successively to make an orthonormal basis for W : First orthogonalize fhc
i g against

PdðTÞ and replace fhc
i g by

hc
i 	

XM	1

c¼0
/hc

i ; w
c
TSwcT ;
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and denote the above functions still by fhc
i g: Then spanðfhc

i gÞ ¼
PdðTÞ>-"3

i¼1PdðTiÞ: Orthogonalizing spanfhc
i g by Gram–Schmidt, we get an

orthonormal basis for W : Once again denote the basis by fhc
i g: Finally, define the

mother multiwavelets as

hc
ei

j;k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2jTj;kj

s
hc

i ; 0pcoM:

Note that, multiwavelets with better smoothness, more symmetry and/or
vanishing moments can be constructed by refining the design scheme.

3. Prior approximation

Suppose a prior p for a parameter y belonging to a triangle T has a probability
density function pðyÞ: Then we have the wavelet expansion for pðyÞ as

pðyÞ ¼ a0wT0
ðyÞ þ

X3
i¼1

XN
j¼0

X
kAIj

bi
j;khei

j;k
ðyÞ: ð1Þ

Denoted by P the class of priors whose densities have above wavelet expansion.
Given a prior distribution pðyÞ; for any e40; there is an approximation peðyÞAP

with wavelet expansion up to J levels:

peðyÞ ¼ a0wT0
ðyÞ þ

X3
i¼1

XN
j¼0

X
kAIj

bi
j;khei

j;k
ðyÞ ð2Þ

such that

jjpeðyÞ 	 pðyÞjjpe; ð3Þ

where jj � jj denotes the total variation norm. Suppose X1;y;Xn are i.i.d. with
probability density function f ðxjyÞ: The posterior probability density function is
then given by

pðyjXnÞ ¼ pðyÞf ðXnjyÞ=f ðXnÞ;

where Xn ¼ ðX1;y;XnÞ; f ðXnjyÞ ¼
Qn

i¼1 f ðXijyÞ; and f ðXnÞ ¼
R

f ðXnjyÞpðdyÞ is the
marginal probability density function.
Denote by feðXnÞ and peðyjXnÞ the respective marginal probability density function

of Xn and the posterior probability density function of y given Xn; when the prior
probability density function is taken to be peðyÞ: Now we have the following
theorem.

Theorem 1. Assume f ðxjyÞ; as a function of y; is bounded from above for each x; then

jjpeðyjXnÞ 	 pðyjXnÞjjpKðXnÞe;

where KðXnÞ depends on data Xn only.
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Proof. Denote by K a generic constant whose value may change from appearance to

appearance and let n ¼ pe 	 p: Then by Hahn decomposition, we have n ¼ nþ 	 n	;
and jjnjj ¼ nþðTÞ þ n	ðTÞ; where nþ and n	 are finite measures with mutually
exclusive supports. For the absolute difference of two marginal probability density
functions, we have

j feðXnÞ 	 f ðXnÞj ¼
Z

f ðXnjyÞfpeðdyÞ 	 pðdyÞg
����

����
¼
Z

f ðXnjyÞnðdyÞ
����

����
¼
Z

f ðXnjyÞnþðdyÞ 	
Z

f ðXnjyÞn	ðdyÞ
����

����
p
Z

f ðXnjyÞnþðdyÞ þ
Z

f ðXnjyÞn	ðdyÞ

p max
yAT

f f ðXnjyÞgfnþðTÞ þ n	ðTÞg

¼K jjpe 	 pjj

pKe: ð4Þ

In view of (4), we obtain

jjpðyjXnÞ 	 pðyjXnÞjj ¼ ½ feðXnÞf ðXnÞ�	1jj f ðXnjyÞfpeðyÞf ðXnÞ 	 pðyÞf ðXnÞ

þ pðyÞf ðXnÞ 	 pðyÞfeðXnÞgjj

p ½ f 2ðXnÞð1	 KeÞ�	1 max
yAT

f f ðXnjyÞgf f ðXnÞjjpeðyÞ 	 pðyÞjj

þ jj½ f ðXnÞ 	 feðXnÞ�pðyÞjjg

p ½ f 2ðXnÞð1	 KeÞ�	1 max
yAT

f f ðXnjyÞgf f ðXnÞjjpeðyÞ 	 pðyÞjj

þ j f ðXnÞ 	 feðXnÞjg

p ½ f 2ðXnÞð1	 KeÞ�	1 max
yAT

f f ðXnjyÞgf f ðXnÞeþ Keg

¼KðXnÞe:

Corollary 1.

jjEðyjXnÞ 	 EeðyjXnÞjj2pK1ðXnÞe;

where jj � jj2 is the Euclidian distance.
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Proof. Let y ¼ ðy1; y2; y3Þ: For each yi; using the similar argument for proving (4) we
show

jEðyijXnÞ 	 EeðyijXnÞj ¼
Z

yipeðdyjXnÞ 	
Z

yipðdyjXnÞ
����

����
p max

yAT
fjyijgjjpðyjXnÞ 	 pðyjXnÞjj

p max
yAT

fjyijgKðXnÞe:

We complete the proof by applying

jjEðyjXnÞ 	 EeðyjXnÞjj22 ¼
X3
i¼1

jEðyijXnÞ 	 EeðyijXnÞj2:

Note that the wavelet expansion (1) requires very mild condition like square
integrability. In fact, all practically reasonable prior densities on a triangle satisfy it.
Thus, for any prior on the triangle, we can have a wavelet-based prior (2) on the
triangle which is very close to the true prior in total variation distance as given in (3).
Theorem 1 and its corollary imply that, as the wavelet-based priors well approximate
the true prior, the corresponding posterior distributions and the posterior means are
very close to each other. Thus, the wavelet-based prior is quite robust for Bayesian
analysis.
Wavelet-based prior can be used for either approximating an entire prior

distribution or specifying a prior with certain features. In practice, we often have
some knowledge on the prior for a given problem. For example, with enough prior
information we may choose a known distribution as the prior; or we may have some
feature information on the prior such as where and/or how the prior concentrates.
For modeling the prior living on a triangle, wavelet-based prior can conveniently
incorporate such prior knowledge into prior specification. For example, if a
complicated distribution is selected as the prior, then we can use wavelet-based prior
approximation (2) with the coefficients

bi
j;k ¼

Z
hei

j;k
ðyÞpðyÞy; ð5Þ

evaluated analytically or numerically from the prior pðyÞ: Alternatively, available
information may enable us to envision that the prior assigns most of its mass around
certain areas or points. The wavelet-based prior specification can easily accom-
modate such prior feature. Consider triangle T ¼ fy ¼ ðy1; y2; y3Þ: 0pyip1 andP3

i¼1 yi ¼ 1g: Suppose the prior is concentrated around two points ðy1; y2; y3Þ ¼
ð3
4
; 1
8
; 1
8
Þ and ðy1; y2; y3Þ ¼ ð1

8
; 3
4
; 1
8
Þ: Then we know that the important wavelets

ðhe1
j;k
; he2

j;k
; he3

j;k
Þ in (2) are those whose associated triangles ðe1j;k; e2j;k; e3j;kÞ contain at

least one of these two points. For simplicity, we take J ¼ 2 in (2), i.e., wavelet
approximation up to level two. There are total 21 triangles (including T), with 4 in
level one and 16 in level two. Each point is inside one of the two triangles in level one
that are near the two original acute angles. In level two, each point sits on the
common edge of two adjacent triangles. So out of the 21 triangles, seven triangles (T ;
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two in level one and four in level two) contain at least one point. Thus, we select the

seven corresponding wavelets in (2) and determine the wavelet coefficients bi
j;k

according to (5) with available information on the prior pðyÞ: For example, without
further information we may treat wavelets in the same level equally and specify their

coefficients bi
j;k as in the case of wavelets on an interval (see [2,3,6]).

4. Simulations

In this section, we conduct a Monte Carlo simulation study to illustrate the use of
wavelet-based priors in a Bayesian analysis. In the simulation study, we consider
f ðxjyÞ is a trinomial distribution. We take X ¼ ðX1;X2;X3Þ which follows a
trinomial distribution with n ¼ 15 and yAT with T ¼ fy ¼ ðy1; y2; y3Þ:
0pyip1 and

P3
i¼1 yi ¼ 1g: We simulate three prior scenarios. These priors are

constructed as follows. As a probability density function on T ; pðyÞ is proportional
to the truncation on T of the distribution

p1Nð1
4
; 0:12Þ � Nð1

4
; 0:12Þ þ p2Nð3

4
; 0:12Þ � Nð1

8
; 0:12Þ þ p3Nð1

8
; 0:12Þ � Nð3

4
; 0:12Þ;

which is the mixture of three bivariate normal distributions: product of two

independent Nð1
4
; 0:12Þ; product of independent Nð1

8
; 0:12Þ and Nð3

4
; 0:12Þ; and

product of independent Nð3
4
; 0:12Þ and Nð1

8
; 0:12Þ; with corresponding mixture

weights p1; p2 and p3; i.e.,
P3

i¼1 pi ¼ 1 and 0opio1 for i ¼ 1; 2; 3: We approximate
this prior by its wavelet expansion (1) up to the level J ¼ 12:
For this prior and its wavelet approximation, there are no closed-form expansions

for the posterior distributions. In view of that we calculate posterior distributions,
posterior means and Bayes risks by Monte Carlo method. We simulate a sample of y
from each prior distribution and for each simulated value of y; a value of X is
generated from a trinomial distribution with k ¼ 15; i.e., X takes value in

f0;y; 15g3: This simulation procedure is repeated 20,000 times to obtain
realizations of ðy;XÞ: We group the 20,000 data into subsamples according to the
values of X : For each value of X ; we select its corresponding subsample and take the
sample distribution and sample mean as the posterior distribution and posterior
mean, respectively. With all posterior means, we finally calculate the sample average
of the squared differences between y and its posterior mean as Bayes risk.
In the first example, p1 ¼ 1

2
and p2 ¼ p3 ¼ 1

4
: The prior is displayed in Fig. 1, and it

has three modes with the largest one in the middle. The difference between the true
prior and its wavelet expansion is invisible. The total variation between the true prior
and the wavelet approximation is computed to be 0.005. The Bayes risks for the true
prior and the wavelet approximation both are computed to be 0.0236. As a
comparison, we also select a Dirichlet prior Dð7:4; 7:4; 6:7Þ to approximate the prior
by matching the first two moments, and obtain the Bayes risk under the Dirichlet
prior as 0.0628. The Bayes risk under the Dirichlet prior is 2.65 times of that for the
wavelet prior.

ARTICLE IN PRESS
D.K. Dey, Y. Wang / Journal of Multivariate Analysis 89 (2004) 338–350346



In the second example, p1 ¼ 1
5
and p2 ¼ p3 ¼ 2

5
: The prior has two larger modes

near the triangular corners and the smallest one in the middle and is displayed in
Fig. 2. From the graph, it is clear that the wavelet prior has invisible difference from
the true prior. It is harder for Dirichlet prior to approximate a prior of this kind of
shape. Indeed, the Bayes risk under the Dirichlet approximation prior is 3.8 times of
that under the wavelet prior.
The third example is to model a prior information where y comes from two

sources which live in an area centered at ð1
4
; 1
4
; 1
2
Þ and is concentrated at a point ð3

4
; 1
8
; 1
8
Þ:

Thus, we take pðyÞ to be proportional to the truncation on T of the distribution

1

2
Nð1
4
; 0:12Þ � Nð1

4
; 0:12Þ þ 1

2
Nð3
4
; 0:022Þ � Nð1

8
; 0:022Þ

which is a half and half mixture of the product of two independent Nð1
4
; 0:12Þ and the

product of Nð3
4
; 0:022Þ and Nð1

8
; 0:022Þ: This corresponds to the case that the prior
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Fig. 1. The three-mode prior with the largest mode in the middle.
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has a very sharp spike at y ¼ ð3
4
; 1
8
; 1
8
Þ: The difference between the true prior and its

wavelet expansion is again invisible. The total variation between the true prior and
the wavelet approximation is computed to be 0.06. The ratio for the two Bayes risks
for the Dirichlet approximation prior and the wavelet prior is 4.1.
From the examples we also see that modeling with wavelet-based priors retains

important prior feature characteristics. For example, in Fig. 3 the histogram is
displayed for wavelet-based posterior of y2 with X ¼ ð8; 4; 3Þ: It clearly indicates that
the posterior has two modes as that for the true posterior, while Dirichlet-based
prior always has one mode (see Fig. 4).

5. Conclusion

This paper applies wavelets constructed on a triangle to model prior on the
triangle in Bayesian analysis. It shows that practically reasonable prior densities can
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Fig. 3. (a) The prior with a mode and a sharp spike. (b) The lower part of (a).
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be well approximated by wavelet-based priors and the posterior corresponding to
wavelet-based priors can be made to arbitrarily close to that based on the true prior.
Modeling with wavelet-based priors is very flexible and has the ability to preserve
some envisioned prior features. Numerical simulations are conducted to illustrate the
effectiveness and flexibility of wavelet-based priors.
Although this paper focuses on triangles. The methodology can be easily adopted

to other complicated domains like simplex and sphere. With wavelets constructed on
these domains, we can easily establish the similar methodology and results for these
domains.
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