23 research outputs found

    Five Stars and a Moon: The Legacy Series

    Get PDF
    Great writing and Hollins have been synonymous for decades, even before the highly acclaimed graduate program in creative writing officially began in 1960. Now, Hollins Theatre celebrates this literary tradition by launching the Legacy Series, showcasing dynamic plays, musicals, and original theatre pieces based on important works by some of Hollins\u27 most recognized writers. Five Stars and a Moon launches the series: five productions spotlighting six authors. · Please join us for these exciting performances created by Hollins\u27 talented students, faculty, and professional guest artists.https://digitalcommons.hollins.edu/performances/1006/thumbnail.jp

    Reconstitution of an epithelial chloride channel. Conservation of the channel from mudpuppy to man

    Get PDF
    We have previously shown that monoclonal antibody E12 (MAb E12), one of several such antibodies raised against theophylline-treated Necturus gallbladder (NGB) epithelial cells, inhibits the chloride conductance in the apical membrane of that tissue. Since chloride channels are critical to the secretory function of epithelia in many different animals, we have used this antibody to determine whether the channels are conserved, and in an immunoaffinity column to isolate the channel protein. We now demonstrate that MAb E12 cross-reacts with detergent- solubilized extracts of different tissues from various species by enzyme-linked immunosorbent assay (ELISA). Western blot analysis shows that this monoclonal antibody recognizes proteins of Mr 219,000 in NGB, toad gallbladder, urinary bladder, and small intestine, A6 cells, rat colon, rabbit gastric mucosa, human lymphocytes, and human nasal epithelial cells, and inhibits the chloride conductance in toad gallbladder, rat colon, and human nasal epithelium. Detergent- solubilized protein eluted from an immunoaffinity column and then further purified via FPLC yields a fraction (Mr 200,000-220,000) which has been reconstituted into a planar lipid bilayer. There it behaves as a chloride-selective channel (PCl/PNa = 20.2 in a 150/50 mM trans- bilayer NaCl gradient) whose unit conductance is 62.4 +/- 4.6 pS, and which is blocked in the bilayer by the antibody. The gating characteristics of this channel indicate that it can exist as aggregates or as independent single channels, and that the antibody interferes with gating of the aggregates, leaving the unit channels unchanged. From these data we conclude that the protein of Mr 219,000 recognized by this monoclonal antibody is an important component of an epithelial chloride channel, and that this channel is conserved across a wide range of animal species

    Structural and Functional Features of a Developmentally Regulated Lipopolysaccharide-Binding Protein

    Get PDF
    ABSTRACT Mammalian lipopolysaccharide (LPS) binding proteins (LBPs) occur mainly in extracellular fluids and promote LPS delivery to specific host cell receptors. The function of LBPs has been studied principally in the context of host defense; the possible role of LBPs in nonpathogenic host-microbe interactions has not been well characterized. Using the Euprymna scolopes-Vibrio fischeri model, we analyzed the structure and function of an LBP family protein, E. scolopes LBP1 (EsLBP1), and provide evidence for its role in triggering a symbiont-induced host developmental program. Previous studies showed that, during initial host colonization, the LPS of V. fischeri synergizes with peptidoglycan (PGN) monomer to induce morphogenesis of epithelial tissues of the host animal. Computationally modeled EsLBP1 shares some but not all structural features of mammalian LBPs that are thought important for LPS binding. Similar to human LBP, recombinant EsLBP1 expressed in insect cells bound V. fischeri LPS and Neisseria meningitidis lipooligosaccharide (LOS) with nanomolar or greater affinity but bound Francisella tularensis LPS only weakly and did not bind PGN monomer. Unlike human LBP, EsLBP1 did not bind N. meningitidis LOS:CD14 complexes. The eslbp1 transcript was upregulated ~22-fold by V. fischeri at 24 h postinoculation. Surprisingly, this upregulation was not induced by exposure to LPS but, rather, to the PGN monomer alone. Hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) and immunocytochemistry (ICC) localized eslbp1 transcript and protein in crypt epithelia, where V. fischeri induces morphogenesis. The data presented here provide a window into the evolution of LBPs and the scope of their roles in animal symbioses. IMPORTANCE Mammalian lipopolysaccharide (LPS)-binding protein (LBP) is implicated in conveying LPS to host cells and potentiating its signaling activity. In certain disease states, such as obesity, the overproduction of this protein has been a reliable biomarker of chronic inflammation. Here, we describe a symbiosis-induced invertebrate LBP whose tertiary structure and LPS-binding characteristics are similar to those of mammalian LBPs; however, the primary structure of this distantly related squid protein (EsLBP1) differs in key residues previously believed to be essential for LPS binding, suggesting that an alternative strategy exists. Surprisingly, symbiotic expression of eslbp1 is induced by peptidoglycan derivatives, not LPS, a pattern converse to that of RegIIIγ, an important mammalian immunity protein that binds peptidoglycan but whose gene expression is induced by LPS. Finally, EsLBP1 occurs along the apical surfaces of all the host’s epithelia, suggesting that it was recruited from a general defensive role to one that mediates specific interactions with its symbiont

    Structural and Functional Features of a Developmentally Regulated Lipopolysaccharide-Binding Protein

    Get PDF
    Mammalian lipopolysaccharide (LPS) binding proteins (LBPs) occur mainly in extracellular fluids and promote LPS delivery to specific host cell receptors. The function of LBPs has been studied principally in the context of host defense; the possible role of LBPs in nonpathogenic host-microbe interactions has not been well characterized. Using the Euprymna scolopes-Vibrio fischeri model, we analyzed the structure and function of an LBP family protein, E. scolopes LBP1 (EsLBP1), and provide evidence for its role in triggering a symbiont-induced host developmental program. Previous studies showed that, during initial host colonization, the LPS of V. fischeri synergizes with peptidoglycan (PGN) monomer to induce morphogenesis of epithelial tissues of the host animal. Computationally modeled EsLBP1 shares some but not all structural features of mammalian LBPs that are thought important for LPS binding. Similar to human LBP, recombinant EsLBP1 expressed in insect cells bound V. fischeri LPS and Neisseria meningitidis lipooligosaccharide (LOS) with nanomolar or greater affinity but bound Francisella tularensis LPS only weakly and did not bind PGN monomer. Unlike human LBP, EsLBP1 did not bind N. meningitidis LOS:CD14 complexes. The eslbp1 transcript was upregulated ~22-fold by V. fischeri at 24 h postinoculation. Surprisingly, this upregulation was not induced by exposure to LPS but, rather, to the PGN monomer alone. Hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) and immunocytochemistry (ICC) localized eslbp1 transcript and protein in crypt epithelia, where V. fischeri induces morphogenesis. The data presented here provide a window into the evolution of LBPs and the scope of their roles in animal symbioses
    corecore