218 research outputs found

    Purification, characterization and serological detection of virus-like particles associated with banana bunchy top disease in Australia

    Get PDF
    Isometric virus-like particles, 18 nm in diameter, have been isolated from banana (Musa spp.) affected by bunchy top disease in Australia. Banana bunchy top disease-associated virus-like particles (BBTV) banded as a single component with buoyant density of 1.28 to 1.29 g/ml in Cs2SO4 and sedimented at about 46S in isokinetic sucrose density gradients. The A 260/A 280 of purified preparations was about 1.33. A single coat protein of M r 20500 identified with antibodies to BBTV particles from Australia. Single-stranded DNA of about 1 kb as well as ssRNA smaller than 0.45 kb was also associated with the particles. A polyclonal antiserum to BBTV, suitable for use in ELISA, was prepared. Stability and antigenicity of purified BBTV was impaired by storage at pH ≥ 8.5 and freezing at -20 °C without protectants. BBTV was detected by double antibody sandwich-ELISA with monoclonal and polyclonal antibodies, in field-infected banana plants, single aphids from an infective colony, and in experimentally aphid-inoculated banana plants. After transmission of BBTV particles by aphids from a banana bunchy top disease-affected to an uninfected banana plant, the disease was induced and BBTV was detected by ELISA in symptomatic leaves only. BBTV isolates from Australia, Taiwan, People’s Republic of China, Tonga, Western Samoa and Hawaii were found to be serologically related, which suggests a common aetiology for the disease

    Genetic transformation, regeneration and analysis of transgenic peanut

    Get PDF
    Conventional breeding has led to the improvement of some peanut traits such as seed yield and drought tolerance. However, many important agronomic traits have yet to be improved. The recent development of transformation and regeneration systems has allowed the introduction of useful genes into peanut germplasm. The understanding of disease resistance mechanisms is becoming increasingly advanced so that it should be possible to apply technologies that have been proven in other species to peanut.In this technical report we describe protocols for the routine regeration of transformed peanut plants of spanish and virginia market types based on microprojectile bombardment of embryogenic callus as well as Agrobacterium-mediated transformation of somatic embryos

    The Plant Negative-Sense RNA Virosphere: Virus Discovery Through New Eyes

    Get PDF
    The use of high-throughput sequencing (HTS) for virus diagnostics, as well as the importance of this technology as a valuable tool for discovery of novel viruses has been extensively investigated. In this review, we consider the application of HTS approaches to uncover novel plant viruses with a focus on the negative-sense, single-stranded RNA virosphere. Plant viruses with negative-sense and ambisense RNA (NSR) genomes belong to several taxonomic families, including Rhabdoviridae, Aspiviridae, Fimoviridae, Tospoviridae, and Phenuiviridae. They include both emergent pathogens that infect a wide range of plant species, and potential endophytes which appear not to induce any visible symptoms. As a consequence of biased sampling based on a narrow focus on crops with disease symptoms, the number of NSR plant viruses identified so far represents only a fraction of this type of viruses present in the virosphere. Detection and molecular characterization of NSR viruses has often been challenging, but the widespread implementation of HTS has facilitated not only the identification but also the characterization of the genomic sequences of at least 70 NSR plant viruses in the last 7 years. Moreover, continuing advances in HTS technologies and bioinformatic pipelines, concomitant with a significant cost reduction has led to its use as a routine method of choice, supporting the foundations of a diverse array of novel applications such as quarantine analysis of traded plant materials and genetic resources, virus detection in insect vectors, analysis of virus communities in individual plants, and assessment of virus evolution through ecogenomics, among others. The insights from these advancements are shedding new light on the extensive diversity of NSR plant viruses and their complex evolution, and provide an essential framework for improved taxonomic classification of plant NSR viruses as part of the realm Riboviria. Thus, HTS-based methods for virus discovery, our ‘new eyes,’ are unraveling in real time the richness and magnitude of the plant RNA virosphere.Fil: Bejerman, Nicolas. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Debat, Humberto Julio. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Instituto de Patología Vegetal; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Dietzgen, Ralf G.. University of Queensland; Australi

    Illuminating the Plant Rhabdovirus Landscape through Metatranscriptomics Data

    Get PDF
    Rhabdoviruses infect a large number of plant species and cause significant crop diseases. They have a negative-sense, single-stranded unsegmented or bisegmented RNA genome. The number of plant-associated rhabdovirid sequences has grown in the last few years in concert with the extensive use of high-throughput sequencing platforms. Here, we report the discovery of 27 novel rhabdovirus genomes associated with 25 different host plant species and one insect, which were hidden in public databases. These viral sequences were identified through homology searches in more than 3000 plant and insect transcriptomes from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) using known plant rhabdovirus sequences as the query. The identification, assembly and curation of raw SRA reads resulted in sixteen viral genome sequences with full-length coding regions and ten partial genomes. Highlights of the obtained sequences include viruses with unique and novel genome organizations among known plant rhabdoviruses. Phylogenetic analysis showed that thirteen of the novel viruses were related to cytorhabdoviruses, one to alphanucleorhabdoviruses, five to betanucleorhabdoviruses, one to dichorhaviruses and seven to varicosaviruses. These findings resulted in the most complete phylogeny of plant rhabdoviruses to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of plant viruses. Furthermore, this study provided additional evidence for the complexity and diversity of plant rhabdovirus genomes and demonstrated that analyzing SRA public data provides an invaluable tool to accelerate virus discovery, gain evolutionary insights and refine virus taxonomyInstituto de Patología VegetalFil: Bejerman, Nicolas Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Bejerman, Nicolas Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); ArgentinaFil: Dietzgen, Ralf G. University of Queensland. Queensland Alliance for Agriculture and Food Innovation; AustraliaFil: Debat, Humberto Julio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Debat, Humberto Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentin

    Unlocking the Hidden Genetic Diversity of Varicosaviruses, the Neglected Plant Rhabdoviruses

    Get PDF
    The genus Varicosavirus is one of six genera of plant-infecting rhabdoviruses. Varicosaviruses have non-enveloped, flexuous, rod-shaped virions and a negative-sense, single-stranded RNA genome. A distinguishing feature of varicosaviruses, which is shared with dichorhaviruses, is a bi-segmented genome. Before 2017, a sole varicosavirus was known and characterized, and then two more varicosaviruses were identified through high-throughput sequencing in 2017 and 2018. More recently, the number of known varicosaviruses has substantially increased in concert with the extensive use of high-throughput sequencing platforms and data mining approaches. The novel varicosaviruses have revealed not only sequence diversity, but also plasticity in terms of genome architecture, including a virus with a tentatively unsegmented genome. Here, we report the discovery of 45 novel varicosavirus genomes which were identified in publicly available metatranscriptomic data. The identification, assembly, and curation of the raw Sequence Read Archive reads has resulted in 39 viral genome sequences with full-length coding regions and 6 with nearly complete coding regions. The highlights of the obtained sequences include eight varicosaviruses with unsegmented genomes, which are linked to a phylogenetic clade associated with gymnosperms. These findings have resulted in the most complete phylogeny of varicosaviruses to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of plant rhabdoviruses. Thus, the extensive use of sequence data mining for virus discovery has allowed us to unlock of the hidden genetic diversity of varicosaviruses, the largely neglected plant rhabdoviruses.Instituto de Patología VegetalFil: Bejerman, Nicolas Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Bejerman, Nicolas Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); ArgentinaFil: Dietzgen, Ralf G. University of Queensland. Queensland Alliance for Agriculture and Food Innovation; AustraliaFil: Debat, Humberto Julio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Debat, Humberto Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentin

    Presence of a clostero-like virus and a bacilliform virus in pineapple plants in Australia

    Get PDF
    When sap of asymptomatic or mealybug wilt-affected pineapple plants of the Smooth Cayenne group was negatively stained and examined in an electron microscope, clostero-like virus particles were occasionally seen. However, numerous clostero-like virus particles and occasionally some bacilliform particles were seen in partially purified preparations from both asymptomatic and wilted pineapple leaves. An antiserum, made by injecting partially purified preparations of clostero-like particles into a rabbit, trapped and decorated the clostero-like particles. Using this antiserum, the clostero-like particles (c. 1700 -1900x12 nm) were found in almost all plants tested of Smooth Cayenne selections C10, C13, C30 and F-180, the hybrid cv. 53-116 and a selection of the rough leaf Queen group. The particles were more readily trapped from extracts of roots of hybrid cv. 53-116 and Smooth Cayenne selection C10 than from leaves, crowns and fruits. They were not detected in seedlings of a cross between a Queen selection and the Smooth Cayenne selection C10. The clostero-like particles are similar to those reported to occur in pineapple plants in Hawaii and South Africa. This is the first report of their occurrence in Australia. Trapping and decoration tests of particles in pineapples in quarantine from Brazil, France, Malaysia and Taiwan indicated that a similar clostero-like virus occurs in all these countries. The bacilliform particles measured about 133x33 nm. They were trapped and decorated by the Queensland pineapple virus antiserum and also by an antiserum to sugarcane bacilliform badnavirus. They were detected occasionally in various smooth leaf and rough leaf pineapples in north and south Queensland and northern New South Wales. However, in one commercial planting of Smooth Cayenne selection C10 in south Queensland, bacilliform particles were trapped from 29/47 plants. This is the first report of a small bacilliform virus, probably belonging to the badnavirus group, occurring in pineapple plants. The relationship of the clostero-like and bacilliform viruses to yield loss and mealybug wilt in pineapples is unknown

    The Family \u3cem\u3eRhabdoviridae\u3c/em\u3e: Mono- and Bipartite Negative-Sense RNA Viruses with Diverse Genome Organization and Common Evolutionary Origins

    Get PDF
    The family Rhabdoviridae consists of mostly enveloped, bullet-shaped or bacilliform viruses with a negative-sense, single-stranded RNA genome that infect vertebrates, invertebrates or plants. This ecological diversity is reflected by the diversity and complexity of their genomes. Five canonical structural protein genes are conserved in all rhabdoviruses, but may be overprinted, overlapped or interspersed with several novel and diverse accessory genes. This review gives an overview of the characteristics and diversity of rhabdoviruses, their taxonomic classification, replication mechanism, properties of classical rhabdoviruses such as rabies virus and rhabdoviruses with complex genomes, rhabdoviruses infecting aquatic species, and plant rhabdoviruses with both mono- and bipartite genomes

    Viromes of Ten Alfalfa Plants in Australia Reveal Diverse Known Viruses and a Novel RNA Virus

    Get PDF
    Alfalfa plants in the field can display a range of virus-like symptoms, especially when grown over many years for seed production. Most known alfalfa viruses have RNA genomes, some of which can be detected using diagnostic assays, but many viruses of alfalfa are not well characterized. This study aims to identify the RNA and DNA virus complexes associated with alfalfa plants in Australia. To maximize the detection of RNA viruses, we purified double-stranded RNA (dsRNA) for high throughput sequencing and characterized the viromes of ten alfalfa samples that showed diverse virus-like symptoms. Using Illumina sequencing of tagged cDNA libraries from immune-captured dsRNA, we identified sequences of the single-stranded RNA viruses, alfalfa mosaic virus (AMV), bean leafroll virus, a new emaravirus tentatively named alfalfa ringspot-associated virus, and persistent dsRNA viruses belonging to the families Amalgaviridae and Partitiviridae. Furthermore, rolling circle amplification and restriction enzyme digestion revealed the complete genome of chickpea chlorosis Australia virus, a mastrevirus (family Geminiviridae) previously reported only from chickpea and French bean that was 97% identical to the chickpea isolate. The sequence data also enabled the assembly of the first complete genome (RNAs 1–3) of an Australian AMV isolate from alfalfa

    Detection and profiling of circular RNAs in uninfected and maize Iranian mosaic virus-infected maize

    Get PDF
    Circular RNAs (circRNAs) are covalently closed non-coding RNAs that are usually derived from exonic regions of genes, but can also arise from intronic and intergenic regions. Studies of circRNAs in humans, animals and several plant species have shown an altered population of circRNAs in response to abiotic and biotic stress. Recently it was shown that circRNAs also occur in maize, but it is unknown if maize circRNAs are responsive to stress. Maize Iranian mosaic virus (MIMV, genus Nucleorhabdovirus, family Rhabdoviridae) causes an economically important disease in maize and other gramineous crops in Iran. In this study, we used data from RNA-Seq of MIMV-infected maize and uninfected controls to identify differentially expressed circRNAs. Such circRNAs were confirmed by two-dimensional polyacrylamide gel electrophoresis, northern blot, RT-qPCR and sequencing. A total of 1443 circRNAs were identified in MIMV-infected maize and 1165 circRNAs in uninfected maize. Two hundred and one circRNAs were in common between MIMV-infected and uninfected samples. Of these, 155 circRNAs were up-regulated and 5 down-regulated in MIMV infected plants, compared to the uninfected control. This study for the first time identified and profiled circRNA expression in maize in response to virus infection. Moreover, we predict that 33 circRNAs may bind 23 maize miRNAs, possibly affecting plant metabolism and development. Our data suggest a role for circRNAs in plant cell regulation and response to biotic stress such as virus infection, and give new insights into the complexity of plant-microbe interactions
    corecore